Three experiments used postclass formation within-class preference test performances to evaluate the effects of nodal distance on the relatedness of stimuli in equivalence classes. In Experiment 1, two 2-node four-member equivalence classes were established using the simultaneous protocol in which all of the baseline relations were trained together, after which all emergent relations probes were presented together. All training and testing was done using match-to-sample trials that contained two comparisons. After class formation, the effects of nodal distance were evaluated using within-class preference tests that contained samples and both comparisons from the same class. These tests yielded inconsistent performances for most participants. Experiment 2 replicated Experiment 1, but a third null comparison was used on all trials during class formation. Thereafter, virtually all of the within-class probes, for all participants, evoked performances that were consistent with the predicted effects of nodal distance, that is, the selection of comparisons that were nodally closer to the samples. It appears, then, that the establishment of the equivalence classes with a third null comparison induced control by nodal structure of the classes. Experiment 3 demonstrated the generality of these findings with larger classes that contained more nodal separations, that is, three-node five-member classes. Emergent-relations tests conducted immediately after the within-class tests showed the classes to be intact. Thus, the differential relatedness of stimuli in a class or their interchangeability depended on the content of a test trial: within-class probes occasioned responding indicative of differential strength among the stimuli in the class, while cross-class tests occasioned responding indicative of interchangeability of stimuli in the same class.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088076 | PMC |
http://dx.doi.org/10.1901/jeab.2011.95-343 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!