Occupational sensitization to soy allergens in workers at a processing facility.

Clin Exp Allergy

Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505-2888,

Published: July 2011

Background: Exposure to soy antigens has been associated with asthma in community outbreaks and in some workplaces. Recently, 135 soy flake processing workers (SPWs) in a Tennessee facility were evaluated for immune reactivity to soy. Allergic sensitization to soy was common and was five times more prevalent than in health care worker controls (HCWs) with no known soy exposure.

Objective: To characterize sensitization to soy allergens in SPWs.

Methods: Sera that were positive to soy ImmunoCAP (n=27) were tested in IgE immunoblots. Wild-type (WT) and transgenic (TG) antigens were sequenced using nanoscale Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry (nanoUPLC MS/MS). IgE reactivity towards 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSP), a protein found in TG soy, was additionally investigated. De-identified sera from 50 HCWs were used as a control.

Results: Immunoblotting of WT and TG soy flake extracts revealed IgE against multiple soy antigens with reactivity towards 48, 54, and 62 kDa bands being the most common. The prominent proteins that bound SPW IgE were identified by nanoUPLC MS/MS analysis to be the high molecular weight soybean storage proteins, β-conglycinin (Gly m 5), and Glycinin (Gly m 6). No specific IgE reactivity could be detected to lower molecular weight soy allergens, Gly m 1 and Gly m 2, in soybean hull (SH) extracts. IgE reactivity was comparable between WT and TG extracts; however, IgE antibodies to CP4-EPSP could not be detected.

Conclusions And Clinical Relevance: SPWs with specific IgE to soy reacted most commonly with higher molecular weight soybean storage proteins compared with the lower molecular weight SH allergens identified in community asthma studies. IgE reactivity was comparable between WT and TG soy extracts, while no IgE reactivity to CP4-EPSP was observed. High molecular weight soybean storage allergens, Gly m 5 and Gly m 6, may be respiratory sensitizers in occupational exposed SPWs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2222.2011.03756.xDOI Listing

Publication Analysis

Top Keywords

ige reactivity
20
molecular weight
20
soy
14
sensitization soy
12
soy allergens
12
weight soybean
12
soybean storage
12
extracts ige
12
ige
10
soy antigens
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!