Melatonin is involved in the regulation of the cardiovascular system through the modulation of sympathetic function and the nitric oxide (NO)-related pathway and interaction with MT1/MT2 receptors. However, information regarding its direct actions on coronary blood flow and cardiac function is scarce. This study therefore determined the primary in vivo effect of melatonin on cardiac function and perfusion and the involvement of the autonomic nervous system, MT1/MT2 receptors, and NO. In 35 pigs, melatonin infused into the coronary artery at 70 pg for each mL/min of coronary blood flow while preventing changes in heart rate and arterial pressure increased coronary blood flow, dP/dt(max), segmental shortening, and cardiac output by about 12%, 14%, 8%, and 23% of control values (P < 0.05), respectively. These effects were accompanied by an increase in coronary NO release of about 46% (P < 0.05) of control values. The aforementioned responses were graded in a further five pigs. Moreover, the blockade of muscarinic cholinoreceptors (n = 5) and α-adrenoreceptors (n = 5) did not abolish the observed responses to melatonin. After β(1)-adrenoreceptors blocking (n = 5), melatonin failed to affect cardiac function, whereas β(2)-adrenoreceptors (n = 5) and NO synthase inhibition (n = 5) prevented the coronary response and the effect of melatonin on NO release. Finally, all effects were prevented by MT1/MT2 receptor inhibitors (n = 10). In conclusion, melatonin primarily increased coronary blood flow and cardiac function through the involvement of MT1/MT2 receptors, β-adrenoreceptors, and NO release. These findings add new information about the mechanisms through which melatonin physiologically modulates cardiovascular function and exerts cardioprotective effects.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-079X.2011.00886.xDOI Listing

Publication Analysis

Top Keywords

coronary blood
20
blood flow
20
cardiac function
20
mt1/mt2 receptors
16
flow cardiac
12
coronary
8
nitric oxide
8
melatonin
8
pigs melatonin
8
increased coronary
8

Similar Publications

Septicemic omphalophlebitis by Streptococcus equi subsp. zooepidemicus in a southern right whale calf (Eubalaena australis).

Vet Res Commun

January 2025

Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.

Southern right whales (Eubalaena australis) are mysticete cetaceans commonly observed in the coastal waters of Brazil, particularly in Santa Catarina State. There is limited understanding of the causes of calf mortality in this species, particularly concerning infectious diseases. We report a case of omphalophlebitis caused by Streptococcus equi subsp.

View Article and Find Full Text PDF

The acute response to therapeutic afterload reduction differs between heart failure with preserved (HFpEF) versus reduced ejection fraction (HFrEF), with larger left ventricular (LV) stroke work augmentation in HFrEF compared to HFpEF. This may (partially) explain the neutral effect of HFrEF-medication in HFpEF. It is unclear whether such differences in hemodynamic response persist and/or differentially trigger reverse remodeling in case of long-term afterload reduction.

View Article and Find Full Text PDF

We present the case of a 74-year-old female patient with a 50 mm ascending aortic aneurysm who underwent ascending aorta replacement. During routine open heart surgery, suboptimal flow in the cardiopulmonary bypass circuit, led to the discovery of a type B aortic dissection with substantial flow in the false lumen. Conservative management was chosen, focusing on blood pressure control in the ICU.

View Article and Find Full Text PDF

Epicardial catheter ablation is necessary to address ventricular tachycardia targets located far from the endocardium, but epicardial adipose tissue and coronary blood vessels can complicate ablation. We demonstrate that catheter-based near-infrared spectroscopy (NIRS) can identify these obstacles to guide ablation. Eighteen human ventricles were mapped ex vivo using NIRS catheters with optical source-detector separations (SDSs) of 0.

View Article and Find Full Text PDF

The maximal oxygen uptake (V̇O) is typically higher in endurance-trained adolescents than in non-endurance-trained peers. However, the specific mechanisms contributing to this remain unclear, as well as the impact of training during this developmental stage. This study aims to compare V̇O and cardiovascular functions between 12-year-old endurance athletes and non-endurance-trained over a 14-month period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!