Protein kinases play an important role in the regulation of epithelial tight junctions. In the present study, we investigated the role of PKCζ (protein kinase Cζ) in tight junction regulation in Caco-2 and MDCK (Madin-Darby canine kidney) cell monolayers. Inhibition of PKCζ by a specific PKCζ pseudosubstrate peptide results in redistribution of occludin and ZO-1 (zona occludens 1) from the intercellular junctions and disruption of barrier function without affecting cell viability. Reduced expression of PKCζ by antisense oligonucleotide or shRNA (short hairpin RNA) also results in compromised tight junction integrity. Inhibition or knockdown of PKCζ delays calcium-induced assembly of tight junctions. Tight junction disruption by PKCζ pseudosubstrate is associated with the dephosphorylation of occludin and ZO-1 on serine and threonine residues. PKCζ directly binds to the C-terminal domain of occludin and phosphorylates it on threonine residues. Thr403, Thr404, Thr424 and Thr438 in the occludin C-terminal domain are the predominant sites of PKCζ-dependent phosphorylation. A T424A or T438A mutation in full-length occludin delays its assembly into the tight junctions. Inhibition of PKCζ also induces redistribution of occludin and ZO-1 from the tight junctions and dissociates these proteins from the detergent-insoluble fractions in mouse ileum. The present study demonstrates that PKCζ phosphorylates occludin on specific threonine residues and promotes assembly of epithelial tight junctions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408004 | PMC |
http://dx.doi.org/10.1042/BJ20110587 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
Background: C-type lectin (CTL) plays an important act in parasite adhesion, host's cell invasion and immune escape. Our previous studies showed that recombinant Trichinella spiralis C-type lectin (rTsCTL) mediated larval invasion of enteral mucosal epithelium. The aim of this study was to investigate protective immunity produced by vaccination with rTsCTL and its effect on gut epithelial barrier function in a mouse model.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Molecular, Cellular, and Developmental Biology; University of Michigan; Ann Arbor, Michigan, 48109; USA.
To preserve barrier function, cell-cell junctions must dynamically remodel during cell shape changes. We have previously described a rapid tight junction repair pathway characterized by local, transient activation of RhoA, termed "Rho flares", which repair leaks in tight junctions via promoting local actomyosin-mediated junction remodeling. In this pathway, junction elongation is a mechanical trigger that initiates RhoA activation through an influx of intracellular calcium and recruitment of p115RhoGEF.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, China.
The intestinal epithelium, beyond its role in absorption and digestion, serves as a critical protective mechanical barrier that delineates the luminal contents and the gut microbiota from the lamina propria within resident mucosal immune cells to maintain intestinal homeostasis. The barrier is manifested as a contiguous monolayer of specialized intestinal epithelial cells (IEC), interconnected through tight junctions (TJs). The integrity of this epithelial barrier is of paramount.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2025
Faculty of Veterinary Medicine, University of Calgary, Canada. Electronic address:
The intestinal barrier, held together by epithelial cells and intercellular tight junction (TJ) proteins, prevents the penetration of microbial pathogens. Concurrently, intestinal epithelial cells secrete antimicrobial peptides, including cathelicidin. Cathelicidin has direct antibacterial and immunomodulatory functions, although its role in intestinal integrity remains elusive.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Aim: Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!