Objective: To evaluate the bond strength of a self-etch bonding system using static loading and cyclic fatigue with shear testing. This is a two-part evaluation; the first part will evaluate shear testing, the second part tensile testing.
Materials And Methods: Bovine teeth (n = 82) were randomly distributed to either a self-etch (Transbond Plus) or total-etch (37% phosphoric-acid + Transbond XT) group. The static shear (SSBS) and cyclic shear (CSBS) bond strengths were measured 24 hours after the bonding of mesh-based brackets. The adhesive remnant index (ARI) and failure sites were evaluated.
Results: The mean SSBS was 34.25 ± 9.21 and 24.64 ± 9.42 MPa for the total- and self-etch groups, respectively. CSBS was 24.07 ± 0.65 MPa and 18.92 ± 1.08 MPa for the total- and self-etch groups, respectively. Cyclic loading produced lower bond strengths compared to static testing for both adhesives; the difference was only statistically significant for the total-etch system. Comparison of the two materials showed a statistically significant difference between the two techniques. The total-etch had higher bond strengths than the self-etch bonding system. The samples showed a predominance of ARI scored of 2 and 1, and their bonding failure sites were cohesive within the composite.
Conclusion: Cyclic loading, simulating occlusal forces, reduces the bond strength of both bonding systems. Even though the self-etch bonding system had lower shear bond strength than the total-etch system, both were still clinically acceptable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8916198 | PMC |
http://dx.doi.org/10.2319/012811-59.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!