Understanding the driving forces governing protein assembly requires the characterization of interactions at molecular level. We focus on two homologous oppositely charged proteins, lysozyme and α-lactalbumin, which can assemble into microspheres. The assembly early steps were characterized through the identification of interacting surfaces monitored at residue level by NMR chemical shift perturbations by titrating one (15)N-labeled protein with its unlabeled partner. While α-lactalbumin has a narrow interacting site, lysozyme has interacting sites scattered on a broad surface. The further assembly of these rather unspecific heterodimers into tetramers leads to the establishment of well-defined interaction sites. Within the tetramers, most of the electrostatic charge patches on the protein surfaces are shielded. Then, hydrophobic interactions, which are possible because α-lactalbumin is in a partially folded state, become preponderant, leading to the formation of larger oligomers. This approach will be particularly useful for rationalizing the design of protein assemblies as nanoscale devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm200285eDOI Listing

Publication Analysis

Top Keywords

residue level
8
early steps
8
investigation residue
4
level early
4
assembly
4
steps assembly
4
assembly proteins
4
proteins supramolecular
4
supramolecular objects
4
objects understanding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!