A possible role of metabolism by intestinal bacteria in arbutin-induced toxicity was investigated in mammalian cell cultures. Following an incubation of arbutin with intestinal bacteria, either Bifidobacterium longum HY81 or Bifidobacterium adolescentis, for 24 h, its aglycone hydroquinone could be produced and detected in the bacterial culture media. The bacterial growth was not affected up to 10 mM arbutin in the culture medium. When the toxicity of bacteria cultured medium with arbutin was tested in the HepG2 cell lines, the medium with arbutin was more toxic than either parent arbutin only or bacteria cultured medium without arbutin, indicating that metabolic activation might be required in arbutin-induced toxicity. In addition, bacteria cultured medium with arbutin could suppress LPS and ConA mitogenicity in splenocyte cultures prepared from normal mice. The results indicate that the present toxicity testing system might be applied for assessing the possible role of metabolism by intestinal bacteria in certain chemical-induced toxicity in mammalian cell cultures.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-011-0420-9DOI Listing

Publication Analysis

Top Keywords

intestinal bacteria
16
medium arbutin
16
role metabolism
12
metabolism intestinal
12
arbutin-induced toxicity
12
bacteria cultured
12
cultured medium
12
bacteria arbutin-induced
8
mammalian cell
8
cell cultures
8

Similar Publications

The outbreak of COVID-19 has opened up new avenues for exploring the importance of vitamin D in immunity, in addition to its role in calcium absorption. Recently, vitamin D supplementation has been found to enhance T regulatory lymphocytes, which are reduced in individuals with COVID-19. Increased risk of pneumonia and increases in inflammatory cytokines have been reported to be major threats associated with vitamin-D deficiency.

View Article and Find Full Text PDF

Identifying the signatures of intestinal dysbiosis caused by common stresses is fundamental to establishing efficient health monitoring strategies for sea cucumber. This study investigated the impact of six common stress experienced frequently in aquaculture on the growth performance, intestinal homeostasis and microbiota of sea cucumber, including thermal (23°C), hypoosmotic (22‰ salinity), ammonium (0.5 mg/L NH -N), and nitrite (0.

View Article and Find Full Text PDF

Fecal microbiota transplantation attenuates Alzheimer's disease symptoms in APP/PS1 transgenic mice via inhibition of the TLR4-MyD88-NF-κB signaling pathway-mediated inflammation.

Behav Brain Funct

January 2025

Wenzhou Key Laboratory of Sanitary Microbiology; School of Laboratory Medicine and Life Sciences; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.

Alzheimer's disease (AD) is a prevalent and progressive neurodegenerative disorder that is the leading cause of dementia. The underlying mechanisms of AD have not yet been completely explored. Neuroinflammation, an inflammatory response mediated by certain mediators, has been exhibited to play a crucial role in the pathogenesis of AD.

View Article and Find Full Text PDF

Host metabolism balances microbial regulation of bile acid signalling.

Nature

January 2025

Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.

Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development, metabolism, immune responses and cognitive function. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues.

View Article and Find Full Text PDF

After allogeneic HSCT (allo-HSCT), the diversity of the intestinal microbiota significantly decreases. The changes can be rapid and are thought to be caused by chemotherapy, antibiotics, or intestinal inflammation. Most patients are exposed to prophylactic and therapeutic antibiotics during neutropenia and several patients are colonized by ESBL bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!