Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Maximum likelihood is commonly used for estimation of model parameters in analysis of two-level structural equation models. Constraints on model parameters could be encountered in some situations such as equal factor loadings for different factors. Linear constraints are the most common ones and they are relatively easy to handle in maximum likelihood analysis. Nonlinear constraints could be encountered in complicated applications. In this paper we develop an EM-type algorithm for estimating model parameters with both linear and nonlinear constraints. The empirical performance of the algorithm is demonstrated by a Monte Carlo study. Application of the algorithm for linear constraints is illustrated by setting up a two-level mean and covariance structure model for a real two-level data set and running an EQS program.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085489 | PMC |
http://dx.doi.org/10.1177/0013164410381272 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!