Recent neuroimaging investigations have identified a relationship between psychotic symptoms in schizophrenia and abnormal brain connectivity. On the basis of the continuum model of psychosis, it was hypothesized that schizotypal traits in healthy control participants would be associated with relatively impaired frontotemporal white matter health as assessed using diffusion tensor imaging. Twenty-one participants (12 women and 9 men aged 18 to 58 years) completed the Schizotypal Personality Questionnaire (SPQ) and underwent diffusion-weighted magnetic resonance imaging scanning as part of a larger study. White matter integrity for the major association fibre tracts was assessed using standard measures of diffusivity, specifically fractional anisotropy (FA) and axial and radial diffusivity. A series of negative binomial regressions yielded significant relationships between reduced FA in seven white matter tracts and increased scores on the SPQ cognitive-perceptual factor. These findings are consistent with research relating brain connectivity to the positive symptoms of schizophrenia, suggesting that the neurobiological bases of schizotypal personality in healthy controls may be analogous to the neurobiological bases of schizophrenia spectrum disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1097/NMD.0b013e318217514bDOI Listing

Publication Analysis

Top Keywords

white matter
12
symptoms schizophrenia
8
brain connectivity
8
schizotypal personality
8
neurobiological bases
8
investigation relationship
4
relationship cortical
4
cortical connectivity
4
connectivity schizotypy
4
schizotypy general
4

Similar Publications

Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.

View Article and Find Full Text PDF

Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.

View Article and Find Full Text PDF

This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.

View Article and Find Full Text PDF

Background: Central arterial stiffening is associated with brain white matter (WM) damage and gray matter (GM) volume loss in older adults, but little is known about this association from an adult lifespan perspective.

Purpose: To investigate the associations of central arterial stiffness with WM microstructural organization, WM lesion load, cortical thickness, and GM volume in healthy adults across the lifespan.

Study Type: This is a cross-sectional study.

View Article and Find Full Text PDF

What Impact Does Net Zero Action on Road Transport and Building Heating Have on Exposure to UK Air Pollution?

Environ Sci Technol

January 2025

Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Biomedical Engineering Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom.

This study explores the cobenefits of reduced nitrogen dioxide (NO), ozone (O), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee's Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!