Here we report for the first time accurate and comprehensive measurements of electrical properties of individual CoPt/Pt multilayer nanowires both with periodic and non-periodic layer structures. A remarkably high failure current density of 1.69 × 10(12) A m(-2) for the periodic MNW and a similar 1.76 × 10(12) A m(-2) for the non-homogeneous MNW has been measured. The resistance of both types of multilayer nanowire structures are well fitted by a series resistance model, determining the separate resistance contribution of the component layers and magnetic/nonmagnetic interfaces for a single multilayer nanowire. The field-dependent interface resistance of both samples is calculated, 13.2 Ω for periodic layer structures and 4.84 Ω for non-periodic layer structures. The clear physical picture of the resistance distribution within individual multilayer nanowires is then determined. The accurate electrical testing of magnetic multilayer nanowires provides basic and necessary electrical parameters for their usage as building blocks or interconnects in nanoelectronics and nanosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/22/24/245709 | DOI Listing |
Materials (Basel)
January 2025
Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.
A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France.
The development of ion-sensitive field-effect transistor (ISFET) sensors based on silicon nanowires (SiNW) has recently seen significant progress, due to their many advantages such as compact size, low cost, robustness and real-time portability. However, little work has been done to predict the performance of SiNW-ISFET sensors. The present study focuses on predicting the performance of the silicon nanowire (SiNW)-based ISFET sensor using four machine learning techniques, namely multilayer perceptron (MLP), nonlinear regression (NLR), support vector regression (SVR) and extra tree regression (ETR).
View Article and Find Full Text PDFNanophotonics
March 2024
The Hong Kong Polytechnic University, Hong Kong SAR, China.
Micromachines (Basel)
October 2024
Shaanxi Key Laboratory of Nano-Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China.
Flexible pressure sensors based on paper have attracted considerable attention owing to their good performance, low cost, and environmental friendliness. However, effectively expanding the detection range of paper-based sensors with high sensitivities is still a challenge. Herein, we present a paper-based resistive pressure sensor with a sandwich structure consisting of two electrodes and three sensing layers.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2024
Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10/134, Wien, 1040, AUSTRIA.
The transition from planar (2D) to three-dimensional (3D) magnetic nanostructures represents a significant advancement in both fundamental research and practical applications, offering vast potential for next-generation technologies like ultrahigh-density storage, memory, logic, and neuromorphic computing. Despite being a relatively new field, the emergence of 3D nanomagnetism presents numerous opportunities for innovation, prompting the creation of a comprehensive roadmap by leading international researchers. This roadmap aims to facilitate collaboration and interdisciplinary dialogue to address challenges in materials science, physics, engineering, and computing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!