Presynaptic modulation of Ia afferents converging onto the motor neuron pool of the extensor carpi radialis (ECR) was compared during contractions (20% of maximal force) sustained to failure as subjects controlled either the angular position of the wrist while supporting an inertial load (position task) or exerted an equivalent force against a rigid restraint (force task). Test Hoffmann (H) reflexes were evoked in the ECR by stimulating the radial nerve above the elbow. Conditioned H reflexes were obtained by stimulating either the median nerve above the elbow or at the wrist (palmar branch) to assess presynaptic inhibition of homonymous (D1 inhibition) and heteronymous Ia afferents (heteronymous Ia facilitation), respectively. The position task was briefer than the force task (P = 0.001), although the maximal voluntary force and electromyograph for ECR declined similarly at failure for both tasks. Changes in the amplitude of the conditioned H reflex were positively correlated between the two conditioning methods (P = 0.02) and differed between the two tasks (P < 0.05). The amplitude of the conditioned H reflex during the position task first increased (129 ± 20.5% of the initial value, P < 0.001) before returning to its initial value (P = 0.22), whereas it increased progressively during the force task to reach 122 ± 17.4% of the initial value at failure (P < 0.001). Moreover, changes in conditioned H reflexes were associated with the time to task failure and force fluctuations. The results suggest a task- and time-dependent modulation of presynaptic inhibition of Ia afferents during fatiguing contractions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129736PMC
http://dx.doi.org/10.1152/jn.00954.2010DOI Listing

Publication Analysis

Top Keywords

presynaptic inhibition
12
position task
12
force task
12
task- time-dependent
8
time-dependent modulation
8
modulation presynaptic
8
fatiguing contractions
8
nerve elbow
8
conditioned reflexes
8
amplitude conditioned
8

Similar Publications

Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation.

View Article and Find Full Text PDF

α-Synuclein (αS) is a 140 amino-acid neuronal protein highly enriched in presynaptic nerve terminals. Its progressive accumulation in Lewy bodies and neurites is the hallmark of Parkinson's disease (PD). A growing number of studies highlights a critical interplay between lipid metabolism and αS biology.

View Article and Find Full Text PDF

Alterations in Prefrontal Cortical Somatostatin Neurons in Schizophrenia: Evidence for Weaker Inhibition of Pyramidal Neuron Dendrites.

Biol Psychiatry

January 2025

Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh; Center for the Neural Basis of Cognition, Carnegie Mellon University. Electronic address:

Background: Certain cognitive processes require inhibition provided by the somatostatin (SST) class of gamma-aminobutyric acid (GABA) neurons in the dorsolateral prefrontal cortex (DLPFC). This inhibition onto pyramidal neuron dendrites depends on both SST and GABA signaling. Although SST mRNA levels are lower in the DLPFC in schizophrenia, it is not known if SST neurons exhibit alterations in the capacity to synthesize GABA, principally via the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67).

View Article and Find Full Text PDF

Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected.

View Article and Find Full Text PDF

Multiacting receptor-targeting antipsychotics and tricyclic antidepressants stimulate various neurotransmitter receptors despite the different targets of postsynaptic receptors and presynaptic reuptake transporters. Their auxiliary and adverse effects may be caused by multiple targets or the modification of the neuronal membrane. To evaluate the membrane responses to olanzapine, imipramine, desipramine, amitriptyline, lidocaine, and dibucaine, we examined the inhibition of lipid peroxidation in egg yolk phosphatidylcholine liposomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!