The dihydroceramide desaturase (DES) enzyme is responsible for inserting the 4,5-trans-double bond to the sphingolipid backbone of dihydroceramide. We previously demonstrated that fenretinide (4-HPR) inhibited DES activity in SMS-KCNR neuroblastoma cells. In this study, we investigated whether 4-HPR acted directly on the enzyme in vitro. N-C8:0-d-erythro-dihydroceramide (C(8)-dhCer) was used as a substrate to study the conversion of dihydroceramide into ceramide in vitro using rat liver microsomes, and the formation of tritiated water after the addition of the tritiated substrate was detected and used to measure DES activity. NADH served as a cofactor. The apparent K(m) for C(8)-dhCer and NADH were 1.92 ± 0.36 μm and 43.4 ± 6.47 μm, respectively; and the V(max) was 3.16 ± 0.24 and 4.11 ± 0.18 nmol/min/g protein. Next, the effects of 4-HPR and its metabolites on DES activity were investigated. 4-HPR was found to inhibit DES in a dose-dependent manner. At 20 min, the inhibition was competitive; however, longer incubation times demonstrated the inhibition to be irreversible. Among the major metabolites of 4-HPR, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) showed the highest inhibitory effect with substrate concentration of 0.5 μm, with an IC(50) of 1.68 μm as compared with an IC(50) of 2.32 μm for 4-HPR. N-(4-Methoxyphenyl)retinamide (4-MPR) and 4-Oxo-N-(4-methoxyphenyl)retinamide (4-oxo-4-MPR) had minimal effects on DES activity. A known competitive inhibitor of DES, C(8)-cyclopropenylceramide was used as a positive control. These studies define for the first time a direct in vitro target for 4-HPR and suggest that inhibitors of DES may be used as therapeutic interventions to regulate ceramide desaturation and consequent function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137051 | PMC |
http://dx.doi.org/10.1074/jbc.M111.250779 | DOI Listing |
Cancers (Basel)
December 2024
Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France.
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic CD5/CD19 B lymphocytes in the blood. These cells migrate to and proliferate in the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL, drug resistance and disease relapse still occur; novel treatment approaches are therefore still needed.
View Article and Find Full Text PDFCancers (Basel)
December 2024
CeRePP, 75020 Paris, France.
Purpose: To identify molecular changes during PCa invasion of adipose space using Spatial Transcriptomic Profiling of PCa cells.
Methods: This study was performed on paired intraprostatic and extraprostatic samples obtained from radical prostatectomy with pT3a pathological stages.
Results: Differential gene expression revealed upregulation of heat shock protein genes: DNAJB1, HSPA8, HSP90AA1, HSPA1B, HSPA1A in PCa PanCK+ cells from the adipose periprostatic space.
Int J Mol Sci
January 2025
Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, CNRS, ISCR-UMR6226, 35000 Rennes, France.
This study examines the chemical composition, antioxidant properties, and urease inhibitory effects of L. subsp. falezlez (Coss.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.
Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.
View Article and Find Full Text PDFMolecules
December 2024
Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Montesano 49, 80131 Naples, Italy.
Silver drugs have played a vital role in human healthcare for the treatment of infections for many centuries. Currently, due to antibiotic resistance, a potential scenario or the application of silver complexes may arise as substitutes for conventional antibiotics. In this perspective, N-heterocyclic carbene (NHC) ligands have been selected as carrier molecules for silver ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!