Objective: Endothelial progenitor cells (EPC) have a regenerative role in the vascular system. In this study, we aimed to evaluate simultaneously the effects of EPC and inflammatory cells on the presence and the extent of coronary artery disease (CAD) and the grade of coronary collateral growth in patients with clinical suspicion of CAD.

Methods: This study has a cross-sectional and observational design. We enrolled 112 eligible patients who underwent coronary angiography consecutively (mean age: 59±9 years). The association of circulating inflammatory cells and EPC (defined by CD34+KDR+ in the lymphocyte and monocyte gate) with the presence, severity and extent of CAD and the degree of collateral growth were investigated. Logistic regression analysis was used to define the predictors of collateral flow.

Results: Of 112 patients 30 had normal coronary arteries (NCA, 27%, 55±9 years) and 82 had CAD (73%, 61±8 years). Among the patients with CAD, the percent degree of luminal stenosis was <50% in 12 patients; 50-90% in 35 patients; and ≥90% in the other 35 patients. Circulating inflammatory cells were higher (leukocytes, 7150±1599 vs 8163±1588 mm(-3), p=0.001; neutrophils, 4239±1280 vs 4827±1273 mm(-3), p=0.021; monocytes, 512±111 vs 636±192 mm(-3), p=0.001) and EPCs were lower (0.27±0.15% vs 0.17±0.14%, p<0.001; 21±15 vs 13±12 mm(-3), p=0.004) in CAD group than NCA group. When we investigated the collateral growth in patients having ≥90% stenosis in at least one major coronary artery, we found that the patients with good collateral growth had significantly higher EPC (0.22±0.17% vs 0.10±0.05%, p=0.009; 18±15 vs 7±3 mm(-3), p=0.003) in comparison to patients with poor collateral growth. Presence of EPC was associated with reduced risk for coronary artery disease (OR: 0.934, 95%CI: 0.883-0.998, p=0.018) and was an independent predictor for good collateral growth (OR: 1.295, 95%CI: 1.039-1.615, p=0.022). A sum of CD34+KDR-, CD34+KDR+ and CD34-KDR+ cells (192±98 mm(-3)), and a CD34-KDR- cell subpopulation within monocyte gate (514±173 mm(-3)) reached to highest counts in good collateral group among all study population.

Conclusion: Endothelial progenitor cells can be mobilized from bone marrow to induce the coronary collateral growth in case of myocardial ischemia even in presence of the vascular risk factors and extensive atherosclerosis. This finding may be supportive to investigate the molecules, which can specifically mobilize EPC without inflammatory cells.

Download full-text PDF

Source
http://dx.doi.org/10.5152/akd.2011.078DOI Listing

Publication Analysis

Top Keywords

endothelial progenitor
8
progenitor cells
8
cells epc
8
inflammatory cells
8
collateral growth
8
coronary
5
cells
4
cells cd34+kdr+
4
cd34+kdr+ monocytes
4
monocytes provide
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Jackson Laboratory, Bar Harbor, ME, USA.

Background: Data from human and model organism studies suggest that genetic background influences susceptibility and resilience to Alzheimer's Disease (AD) neuropathology. We previously showed that, wild-derived PWK/PhJ (PWK) mice carrying the APP/PS1 transgene (PWK.APP/PS1) exhibit cognitive and synaptic resilience compared to traditionally-studied B6.

View Article and Find Full Text PDF

During embryogenesis, endothelial cells (ECs) are generally described to arise from a common pool of progenitors termed angioblasts, which diversify through iterative steps of differentiation to form functionally distinct subtypes of ECs. A key example is the formation of lymphatic ECs (LECs), which are thought to arise largely through transdifferentiation from venous endothelium. Opposing this model, here we show that the initial expansion of mammalian LECs is primarily driven by the in situ differentiation of mesenchymal progenitors and does not require transition through an intermediate venous state.

View Article and Find Full Text PDF

This study aimed to determine if local injection of CXCL12 reduces sphincter fibrosis, restores sphincter muscle content, vascularization, and innervation, and recruits progenitor cells in a rabbit model of anal sphincter injury and incontinence. Adult female rabbits were assigned to 3 groups: uninjured/no treatment (control), injured/treated (treated), and injured/no treatment (untreated) (n=4 each). Injured groups were anesthetized and a section of external anal sphincter was removed at the 9:00 o'clock position.

View Article and Find Full Text PDF

Despite improvements in clinical outcomes of acute myocardial infarction (AMI), mortality rates remain high, indicating the need for further understanding of the pathogenesis and developing more effective cardiac protection strategies. Extracellular vesicles (EVs) carry proteins and noncoding RNAs (ncRNAs) derived from different cardiac cell populations, mainly including cardiomyocytes, endothelial cells, endothelial progenitor cells, cardiac progenitor cells, cardiosphere-derived cells, immune cells, fibroblasts and cardiac telocytes have vital roles under both physiological and pathological process such as myocardial infarction (MI). The content of EVs can also indicate the status of their parental cells and serve as a biomarker for monitoring the risk of cardiac injury.

View Article and Find Full Text PDF

Trained innate immunity as a potential link between preeclampsia and future cardiovascular disease.

Front Endocrinol (Lausanne)

January 2025

Escuela de Tecnología Médica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.

Preeclampsia (PE) is a complex pregnancy syndrome characterized by hypertension with or without proteinuria, affecting 2-6% of pregnancies globally. PE is characterized by excessive release of damage-associated molecular patterns (DAMPs) into the maternal circulation. This DAMP-rich milieu acts on innate immune cells, inducing a proinflammatory state characterized by elevated cytokines such as IL-1β and IL-18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!