Field-scale dissipation of tebuconazole in a vineyard soil amended with spent mushroom substrate and its potential environmental impact.

Ecotoxicol Environ Saf

Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.

Published: September 2011

The persistence, mobility and degradation of tebuconazole were assessed under field conditions in a sandy clay loam soil amended with spent mushroom substrate (SMS) at two rates. The aim was to evaluate the environmental impact of the simultaneous application of SMS and fungicide in a vineyard soil. SMS is the pasteurized and composted organic material remaining after a crop of mushroom is produced. SMS is generated in increasing amounts in La Rioja region (Spain), and could be used as soil amendment in vineyard soils, where fungicides are also applied in large amounts. The study was carried out in 18 experimental plots (6 treatments and 3 replicates per treatment) over one year. Laboratory experiments were also conducted to verify the changes over time in the adsorption of fungicide by soils and in soil dehydrogenase activity caused by the fungicide and/or SMS. Tebuconazole dissipation followed biphasic kinetics with a rapid dissipation phase, followed by a slow dissipation phase. Half-life (DT50) values ranged from 8.2 to 12.4 days, with lower DT50 for amended soils when compared to the non-amended controls. The distribution of tebuconazole through the soil profile (0-50 cm) determined at 124, 209 and 355 days after its application indicated the higher mobility of fungicide to deeper soil layers in amended soils revealing the influence of solid and dissolved organic matter from SMS in this process. Tebuconazole might be available for biodegradation although over time only chemical or photochemical degradation was evident in surface soils. The results obtained highlight the interest of field and laboratory data to design rational applications of SMS and fungicide when they are jointly applied to prevent the possible risk of water contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2011.04.023DOI Listing

Publication Analysis

Top Keywords

vineyard soil
8
soil amended
8
amended spent
8
spent mushroom
8
mushroom substrate
8
environmental impact
8
sms fungicide
8
dissipation phase
8
amended soils
8
soil
7

Similar Publications

Carbon reserves in coffee agroforestry in the Peruvian Amazon.

Front Plant Sci

December 2024

Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Valdivia, Chile.

Introduction: Secondary forests and coffee cultivation systems with shade trees might have great potential for carbon sequestration as a means of climate change adaptation and mitigation. This study aimed to measure carbon stocks in coffee plantations under different managements and secondary forest systems in the Peruvian Amazon rainforest (San Martín Region).

Methods: The carbon stock in secondary forest trees was estimated using allometric equations, while carbon stocks in soil, herbaceous biomass, and leaf litter were determined through sampling and laboratory analysis.

View Article and Find Full Text PDF

Objective: Scientific justification of the methodology for calculating radiation internal doses from 137Cs and 134Cs intake for residents of Ukrainian settlements radioactively contaminated as a result of the Chornobyl (Chernobyl) accident in which measurements of incorporated radiocesium isotopes in humans using whole-body counters (WBC) were not carried out.

Materials And Methods: The paper presents a new methodology for reconstructing doses due to internal irradiation from Chornobyl fallout for both surface (in 1986) and root (in 1987-2023) contamination of vegetation with 137Cs and 134Cs and their transfer into the human body. The methodology for calculating the dose due to surface contamination of vegetation was based on the theoretical model of the transfer of radiocesium isotopes through the food chain with further adjustment of this model to the results of WBC measurements carried out between 15 July and 31 December 1986.

View Article and Find Full Text PDF

Plant-derived biostimulants have gained attention in agricultural practices for their potential to enhance crop quality and resilience. In this study, we investigated the effects of applying a maize gluten-derived protein hydrolysate at the soil level in vineyards on berry quality in a table grape variety, the Black Magic early table grapevine, during veraison. Our results demonstrate significant improvements in various parameters 14 days after application, including increased anthocyanin levels, enhanced sugar accumulation, and larger berry diameter while maintaining berry firmness.

View Article and Find Full Text PDF

[Characteristics of Cd, As, and Pb Pollution in Farmland Soil and Edible Parts of Chili Pepper and Sweet Potato and Their Health Risk Assessment].

Huan Jing Ke Xue

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Ecological Environment of Farmland in Hebei, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, China.

To clarify the characteristics of Cd, As, and Pb concentrations in edible parts of crops and farmland soils, a key farmland survey was conducted on the field scale to investigate the characteristics of Cd, As, and Pb in soil and chili pepper (edible parts in the above-ground section) and sweet potato (edible parts under the ground) and assess the health risk of Cd-As-Pb in edible parts of chili pepper and sweet potato to humans in the typical co-contaminated agricultural soils by Cd, As, and Pb from metal smelting and sewage irrigation in North China. The results showed that the agricultural soil from chili pepper and sweet potato fields was co-contaminated by Cd and As at a moderate pollution level. The combined pollution index (2.

View Article and Find Full Text PDF

Cocoa-growing areas in Ghana have experienced a rise in mining activities affecting cocoa cultivation and increased concentrations of potentially toxic metals in the soil, which can accumulate in cocoa beans. This study evaluated potential toxic metal contamination in cocoa beans and soils from cocoa farms in mining and non-mining areas in Ghana. We used X-ray fluorescence and an ICP-MS to determine metal concentrations, and a Zeeman mercury analyzer to determine mercury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!