AI Article Synopsis

Article Abstract

Numerical models commonly account for elastic inhomogeneity in cortical bone using power-law scaling relationships with various measures of tissue density, but limited experimental data exists for anatomic variation in elastic anisotropy. A recent study revealed anatomic variation in the magnitude and anisotropy of elastic constants along the entire femoral diaphysis of a single human femur (Espinoza Orías et al., 2009). The objective of this study was to confirm these trends across multiple donors while also considering possible confounding effects of the anatomic quadrant, apparent tissue density, donor age, and gender. Cortical bone specimens were sampled from the whole femora of 9 human donors at 20%, 50%, and 80% of the total femur length. Elastic constants from the main diagonal of the reduced fourth-order tensor were measured on hydrated specimens using ultrasonic wave propagation. The tissue exhibited orthotropy overall and at each location along the length of the diaphysis (p < 0.0001). Elastic anisotropy increased from the mid-diaphysis toward the epiphyses (p < 0.05). The increased elastic anisotropy was primarily caused by a decreased radial elastic constant (C(11)) from the mid-diaphysis toward the epiphyses (p < 0.05), since differences in the circumferential (C(22)) and longitudinal (C(33)) elastic constants were not statistically significant (p > 0.29). Anatomic variation in intracortical porosity may account for these trends, but requires further investigation. The apparent tissue density was positively correlated with the magnitude of each elastic constant (p < 0.0001, R(2) > 0.46), as expected, but was only weakly correlated with C(33)/C(11) (p < 0.05, R(2) = 0.04) and not significantly correlated with C(33)/C(22) and C(11)/C(22).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111152PMC
http://dx.doi.org/10.1016/j.jbiomech.2011.04.009DOI Listing

Publication Analysis

Top Keywords

anatomic variation
16
cortical bone
12
tissue density
12
elastic anisotropy
12
elastic constants
12
elastic
10
variation elastic
8
elastic inhomogeneity
8
multiple donors
8
apparent tissue
8

Similar Publications

Background: Superior segmentectomies for clinical T1N0 non-small cell lung cancer (NSCLC) often suffer from inadequate surgical margins. Our study aimed to enhance the precision of superior segmentectomies by focusing on the anatomical features of the superior segmental vein (V) branches, and assess the relevant outcomes.

Methods: The clinical data of 646 patients with cT1N0 NSCLC who underwent video-assisted thoracic surgery (VATS) from August 2020 to August 2021 were retrospectively analyzed.

View Article and Find Full Text PDF

Accurate melanoma diagnosis is crucial for patient outcomes and reliability of AI diagnostic tools. We assess interrater variability among eight expert pathologists reviewing histopathological images and clinical metadata of 792 melanoma-suspicious lesions prospectively collected at eight German hospitals. Moreover, we provide access to the largest panel-validated dataset featuring dermoscopic and histopathological images with metadata.

View Article and Find Full Text PDF

The Coexistence of Carotico-Clinoid Foramen and Interclinoidal Osseous Bridge: An Anatomo-Radiological Study With Surgical Implications.

Oper Neurosurg (Hagerstown)

February 2025

Rhoton Neurosurgery and Otolaryngology Surgical Anatomy Program, Mayo Clinic, Rochester , Minnesota , USA.

Background And Objectives: The coexistence of complete carotico-clinoid bridge (CCB), an ossification between the anterior (ACP) and the middle clinoid (MCP), and an interclinoidal osseous bridge (ICB), between the ACP and the posterior clinoid (PCP), represents an uncommonly reported anatomic variant. If not adequately recognized, osseous bridges may complicate open or endoscopic surgery, along with the pneumatization of the ACP, especially when performing anterior or middle clinoidectomies.

Methods: According to Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews guidelines, a systematic scoping review was conducted up to June 5, 2023.

View Article and Find Full Text PDF

Effective surgical planning is crucial for maximizing patient outcomes following complex orthopedic procedures such as proximal femoral osteotomy. In silico simulations can be used to assess how surgical variations in proximal femur geometry, such as femur neck-shaft and anteversion angles, affect postoperative system mechanics. This study investigated the sensitivity of femur mechanics to postoperative neck-shaft angles, anteversion angles, and osteotomy contact areas using patient-specific finite element analysis informed by neuromusculoskeletal models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!