Aim: Nanoneuroscience, based on the use polymeric nanoparticles (NPs), represents an emerging field of research for achieving an effective therapy for neurodegenerative diseases. In particular, poly-lactide-co-glycolide (PLGA) glyco-heptapetide-conjugated NPs (g7-NPs) were shown to be able to cross the blood-brain barrier (BBB). However, the in vivo mechanisms of the BBB crossing of this kind of NP has not been investigated until now. This article aimed to develop a deep understanding of the mechanism of BBB crossing of the modified NPs.

Materials & Methods: Loperamide and rhodamine-123 (model drugs unable to cross the BBB) were loaded into NPs, composed of a mixture of PLGA, differently modified with g7 or with a random sequence of the same aminoamids (random-g7). To study brain targeting of these model drugs, loaded NPs were administered via the tail vein in rats in order to perform both pharmacological studies and biodistribution analysis along with fluorescent, confocal and electron microscopy analysis, in order to achieve the NP BBB crossing mechanism. Computational analysis on the conformation of the g7- and random-g7-NPs of the NP surface was also developed.

Results: Only loperamide delivered to the brain with g7-NPs created a high central analgesia, corresponding to the 14% of the injected dose, and data were confirmed by biodistribution studies. Electron photomicrographs showed the ability of g7-NPs in crossing the BBB as evidenced by several endocytotic vesicles and macropinocytotic processes. The computational analysis on g7 and random-g7 showed a different conformation (linear vs globular), thus suggesting a different interaction with the BBB.

Conclusion: Taken together, this evidence suggested that g7-NP BBB crossing is enabled by multiple pathways, mainly membrane-membrane interaction and macropinocytosis-like mechanisms. The results of the computational analysis showed the Biousian structure of the g7 peptide, in contrast to random-g7 peptide (globular conformation), suggesting that this difference is pivotal in explaining the BBB crossing and allowing us to hypothesize regarding the mechanism of BBB crossing by g7-NPs.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.11.11DOI Listing

Publication Analysis

Top Keywords

bbb crossing
24
computational analysis
12
bbb
9
blood-brain barrier
8
mechanism bbb
8
model drugs
8
loaded nps
8
crossing
7
analysis
5
investigation mechanisms
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.

Background: Glucagon-like peptide 1 (GLP-1) is a peptide hormone that plays several physiological roles in treating diabetes and in protecting the brain. Recent clinical trials testing 4 different GLP-1 class drugs in phase 2 trials showed a clear correlation between neuroprotection and the ability to cross the BBB. Exenatide and Lixisenatide both showed excellent protective effects in patients Parkinson's disease (PD) and both drugs can readily cross the BBB.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Patiala, India.

Background: Neuroinflammation plays an important role in progression of Alzheimer's disease (AD). Interlukin-6 (IL-6) is well identified marker in initiating and regulating inflammation, and formation of senile plaques in brain. Therefore, simultaneous inhibition of both IL-6 and acetylcholinesterase (AChE) may be an effective strategy for AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

MEPSGEN, Seoul, Korea, Republic of (South).

Background: Impaired Aβ clearance plays a key role in the common, late-onset AD. Anti-Aβ immunotherapies are controversial, in part because of high rates of serious side effects including edema, microhemorrhages, and siderosis, highlighting the importance of the development of alternative Aβ clearance strategy. Here, we introduce a bioinspired nanoparticle named MG-PE3 crossing the human blood-brain barrier (BBB) and clearing Aβ with no adverse effect.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Center for Biomedical Semantics and Data Intelligence (CBSDI), University of Texas Health Science Center at Houston, Houston, TX, USA.

Background: Findings regarding the protective effect of Angiotensin II receptor blockers (ARBs) against Alzheimer's disease and related dementias (ADRD) and cognitive decline have been inconclusive.

Method: A total of 6,390,826 hypertensive individuals were included in this study from Optum's de-identified Clinformatics® Data Mart. We identified antihypertensive medication (AHM) drug classes and subclassified ARBs by blood-brain barrier (BBB) permeability.

View Article and Find Full Text PDF

Background: In the brain as in other organs, complement contributes to immune defence and housekeeping to maintain homeostasis. Sources of complement may include local production by brain cells and influx from the periphery, the latter severely restricted by the blood brain barrier (BBB) in healthy brain. Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!