Hydroxylamine at low concentrations causes a two-flash delay in the first maximum flash yield of oxygen evolved from spinach photosystem II (PSII) subchloroplast membranes that have been excited by a series of saturating flashes of light. Untreated PSII membrane preparations exhibit a multiline EPR signal assigned to a manganese cluster and associated with the S2 state when illuminated at 195 K, or at 273 K in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). We used the extent of suppression of the multiline EPR signal observed in samples illuminated at 195 K to determine the fraction of PSII reaction centers set back to a hydroxylamine-induced S0-like state, which we designate S0*. The manganese K-edge X-ray absorption edges for dark-adapted PSII preparations with or without hydroxylamine are virtually identical. This indicates that, despite its high binding affinity to the oxygen-evolving complex (OEC) in the dark, hydroxylamine does not reduce chemically the manganese cluster within the OEC in the dark. After a single turnover of PSII, a shift to lower energy is observed in the inflection of the Mn K-edge of the manganese cluster. We conclude that, in the presence of hydroxylamine, illumination causes a reduction of the OEC, resulting in a state resembling S0. This lower Mn K-edge energy of S0*, relative to the edge of S1, implies the storage and stabilization of an oxidative equivalent within the manganese cluster during the S0----S1 state transition. An analysis of the extended X-ray absorption fine structure (EXAFS) of the S0* state indicates that a significant structural rearrangement occurs between the S0* and S1 states. The X-ray absorption edge position and the structure of the manganese cluster in the S0* state are indicative of a heterogeneous mixture of formal valences of manganese including one Mn(II) which is not present in the S1 state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00454a024DOI Listing

Publication Analysis

Top Keywords

manganese cluster
20
x-ray absorption
16
state
8
manganese
8
structure manganese
8
multiline epr
8
epr signal
8
illuminated 195
8
oec dark
8
s0* state
8

Similar Publications

Background: Cerebrovascular accidents are known as a great cause of morbidity and mortality worldwide. Although there are known risk factors for ischemic stroke, the cases that cannot be justified with these risk factors are increasing. Toxic metals as a potential risk factor for other diseases in humans are assessed in this study in the CVA group and compared to controls.

View Article and Find Full Text PDF

Resynthesis of Damaged Fe-S Cluster Proteins Protects Against Oxidative Stress in the Absence of Mn-Superoxide Dismutase.

J Fungi (Basel)

November 2024

Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.

Article Synopsis
  • Manganese superoxide dismutase (Mn-SOD) is vital for maintaining mitochondrial function, and its absence heightens sensitivity to oxidative stress and iron limitation.
  • Deleting the Mn-SOD gene resulted in increased vulnerability to oxidative damage and made fungal spores more susceptible to destruction by human immune cells.
  • Analysis revealed that this gene deletion notably altered the oxidative stress response, impacting the regulation of genes related to iron management and protein synthesis in response to stress.
View Article and Find Full Text PDF

Manganese-based materials are essential for developing safe, cost-effective, and environmentally sustainable rechargeable batteries, which are critical for advancing clean energy technologies. However, the high spin state of the Mn cation triggers a pronounced Jahn-Teller effect and phase transformations during cycling, leading to structural instability and reduced electrochemical performance of the Mn-based cathodes. This review provides a fundamental understanding of the Jahn-Teller effect, highlights recent strategies to mitigate the high spin state of Mn, and offers insights into future research directions aimed at overcoming the Jahn-Teller effect to enhance the performance of next-generation Mn-based cathodes for rechargeable batteries.

View Article and Find Full Text PDF

This study investigates the quantities of Rare Earth Elements (REEs) and Potentially Toxic Elements (PTEs) in Dong Nai Province's surface soils. Atomic Absorption Spectrometry (AAS) and Instrumental Neutron Activation Analysis (INAA) were used to determine element concentrations. To validate the concentration results, established reference materials (NIST 2711 and IAEA Soil-7) were used.

View Article and Find Full Text PDF

Renal Clearable Chiral Manganese Oxide Supraparticles for In Vivo Detection of Metalloproteinase-9 in Early Cancer Diagnosis.

Adv Mater

December 2024

State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.

In this study, polypeptide TGGGPLGVARGKGGC-induced chiral manganese dioxide supraparticles (MnO SPs) are prepared for sensitive quantification of matrix metalloproteinase-9 (MMP-9) in vitro and in vivo. The results show that L-type manganese dioxide supraparticles (L-MnO SPs) exhibited twice the affinity for the cancer cell membrane receptor CD47 (cluster of differentiation, integrin-associated protein) than D-type manganese dioxide supraparticles (D-MnO SPs) to accumulate at the tumor site after surface modification of the internalizing arginine-glycine-aspartic acid (iRGD) ligand, specifically reacting with the MMP-9, disassembling into ultrasmall nanoparticles (NPs), and efficiently underwent renal clearance. Furthermore, L-MnO facilitates the quantification of MMP-9 in mouse tumor xenografts, as demonstrated by circular dichroism (CD) and magnetic resonance imaging (MRI) within 2 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!