Upregulation of p21-activated Kinase 6 in rat brain cortex after traumatic brain injury.

J Mol Histol

Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, People's Republic of China.

Published: June 2011

p21-activated Kinase 6 (PAK6) is a serine/threonine kinase belonging to the p21-activated kinase (PAK) family. PAK kinases are well-known regulators of a wide variety of cellular functions, including regulation of cytoskeleton rearrangement, cell survival, apoptosis and the mitogen-activated protein kinase signaling pathway. To elucidate the expressions and possible functions of PAK6 in central nervous system (CNS) lesion and repair, we performed a traumatic brain injury (TBI) model in adult rats. Western blot analysis revealed that PAK6 level significantly increased at day 3 after damage, and then declined during the following days. Besides, double immunofluorescence staining showed PAK6 was primarily expressed in the neurons and a few of glial cells in the normal group. While after injury, the expression of PAK6 was increased significantly in the astrocytes and neurons, and the astrocytes had largely proliferated. We also examined the expression of proliferating cell nuclear antigen (PCNA) whose change was correlated with the expression of PAK6. Importantly, double immunofluorescence staining revealed that cell proliferation evaluated by PCNA appeared in many PAK6-expressing cells at day 3 after injury. In addition, injury-induced expression of PAK6 was co-labeled by active caspase-3 during neuronal apoptosis after injury. Collectively, we hypothesized PAK6 may play important roles in CNS pathophysiology after TBI and further research is needed to have a good understanding of its function and mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10735-011-9324-8DOI Listing

Publication Analysis

Top Keywords

p21-activated kinase
12
expression pak6
12
traumatic brain
8
brain injury
8
pak6
8
double immunofluorescence
8
immunofluorescence staining
8
kinase
5
injury
5
upregulation p21-activated
4

Similar Publications

Background: Erdheim-Chester disease (ECD) is a rare form of non-Langerhans cell histiocytosis with diverse clinical manifestations, often associated with mutations in the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. BRAF and KRAS mutations, which are driver mutations of oncogenes, participate in the same signaling pathway (MAPK/ERK pathway) and are usually mutually exclusive. We report a case of ECD with concurrent BRAF and KRAS mutations treated using BRAF and MEK inhibitors.

View Article and Find Full Text PDF

Nox1/PAK1 is required for angiotensin II-induced vascular inflammation and abdominal aortic aneurysm formation.

Redox Biol

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, PR China. Electronic address:

NADPH oxidase 1 (Nox1) is a major isoform of Nox in vascular smooth muscle cells (VSMCs). VSMC activation and extracellular matrix (ECM) remodelling induce abdominal aortic aneurysm (AAA). In this study, we aim to determine the role of Nox1 in the progression of AAA and explore the underling mechanism.

View Article and Find Full Text PDF

Exploring New Structures of Kinase Inhibitors and Multitarget Strategies in Alzheimer's Disease Treatment.

Protein Pept Lett

December 2024

Department of Pharm. Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.

Alzheimer's disease (AD) treatments currently available have ineffective results. Previously employed Acetylcholine esterase inhibitors and memantine, an NMDA receptor antagonist, target a single target structure that plays a complex role in the multifactorial progression of disease. Memantine moderates the toxic effects of excessive glutamate activity by blocking NMDA receptors, which decreases neurotoxicity in AD, while acetylcholine esterase inhibitors function by blocking cholinergic receptors (muscarinic and nicotinic), preventing the breakdown of acetylcholine, thereby enhancing cholinergic transmission, thus improving cognitive functions in mild to moderate stages of AD.

View Article and Find Full Text PDF

KRAS mutations are frequent in various human cancers. The development of selective inhibitors targeting KRAS mutations has opened a new era for targeted therapy. However, intrinsic and acquired resistance to these inhibitors remains a major challenge.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of pathological proteins and synaptic dysfunction. This study aims to investigate the molecular and functional differences between human induced pluripotent stem cells (hiPSCs) derived from patients with sporadic AD (sAD) and age-matched controls (healthy subjects, HS), focusing on their neuronal differentiation and synaptic properties in order to better understand the cellular and molecular mechanisms underlying AD pathology.

Methods: Skin fibroblasts from sAD patients (n = 5) and HS subjects (n = 5) were reprogrammed into hiPSCs using non-integrating Sendai virus vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!