The present study was aimed at investigating the effect and the possible mechanism of idebenone on endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes). Idebenone inhibited the release of glutamate that was evoked by exposing synaptosomes to the K(+) channel blocker 4-aminopyridine (4-AP), and this phenomenon was concentration dependent. Inhibition of glutamate release by idebenone was prevented by chelating extracellular Ca(2+), or by the vesicular transporter inhibitor bafilomycin A1, but was insensitive to DL-threo-beta-benzyl-oxyaspartate, a glutamate transporter inhibitor. Idebenone decreased the depolarization-induced increase in the cytosolic free Ca(2+) concentration ([Ca(2+)](C)),whereas it did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization. The inhibitory effect of idebenone on evoked glutamate release was prevented by blocking the Ca(v)2.2 (N-type) and Ca(v)2.1 (P/Q-type) channels, but not by blocking intracellular Ca(2+) release or Na(+)/Ca(2+) exchange. Furthermore, the idebenone effect on 4-AP-evoked Ca(2+) influx and glutamate release was completely abolished by the protein kinase A (PKA) inhibitors, H89 and KT5720. On the basis of these results, it was concluded that idebenone inhibits glutamate release from rat cortical synaptosomes and this effect is linked to a decrease in [Ca(2+)](C) contributed by Ca(2+) entry through presynaptic voltage-dependent Ca(2+) channels and to the suppression of PKA signaling cascade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00210-011-0630-1 | DOI Listing |
Mol Psychiatry
January 2025
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.
View Article and Find Full Text PDFCell Res
January 2025
Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin.
View Article and Find Full Text PDFArch Toxicol
January 2025
Applied Biology Department, Miguel Hernández de Elche University, Elche, Spain.
Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models.
View Article and Find Full Text PDFJ Physiol
January 2025
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.
View Article and Find Full Text PDFEndocrinology
January 2025
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
Hypothalamic kisspeptin (Kiss1) neurons are vital for maintaining fertility in the mammal. In the female rodent, Kiss1 neurons populate the anteroventral periventricular/periventricular nuclei (Kiss1AVPV/PeN) and the arcuate nucleus (Kiss1ARH). Kiss1ARH neurons (a.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!