The synthesis, structure, and spectroscopic signatures of a series of four-coordinate iron(II) complexes of β-ketoiminates and their zinc(II) analogues are presented. An unusual five-coordinate iron(II) triflate with three oxygen bound protonated β-ketoimines is also synthesized and structurally characterized. Single-crystal X-ray crystallographic analysis reveals that the deprotonated bis(chelate)metal complexes are four-coordinate with various degrees of distortion depending on the degree of steric bulk and the electronics of the metal center. Each of the high-spin iron(II) centers exhibits multiple electronic transitions including ligand π to π*, metal-to-ligand charge transfer, and spin-forbidden d-d bands. The (1)H NMR spectra of the paramagnetic high-spin iron(II) centers are assigned on the basis of chemical shifts, longitudinal relaxation times (T(1)), relative integrations, and substitution of the ligands. The electrochemical studies support variations in the ligand strength. Parallel mode EPR measurements for the isopropyl substituted ligand complex of iron(II) show low-field resonances (g > 9.5) indicative of complex aggregation or crystallite formation. No suitable solvent system or glassing mixture was found to remedy this phenomenon. However, the bulkier diisopropylphenyl substituted ligand exhibits an integer spin signal consistent with an isolated iron(ii) center [S = 2; D = -7.1 ± 0.8 cm(-1); E/D = 0.1]. A tentative molecular orbital diagram is assembled.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1dt10024fDOI Listing

Publication Analysis

Top Keywords

high-spin ironii
8
ironii centers
8
substituted ligand
8
ironii
7
synthesis characterization
4
characterization sterically
4
sterically encumbered
4
encumbered β-ketoiminate
4
β-ketoiminate complexes
4
complexes ironii
4

Similar Publications

The temperature dependence of Mössbauer quadrupole splitting values: a quantum chemical analysis.

Chem Commun (Camb)

January 2025

Department of Chemistry, Quantum Chemistry, TU Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany.

The two key parameters extracted from Mössbauer spectroscopy, isomer shift and quadrupole splitting, have well-known temperature dependencies. While the behavior of the values following a temperature change has long been known, its microscopic origins are less clear. For quantum chemical calculations - formally representing the situation at 0 K - significant discrepancies with the experiment can arise, especially at elevated temperatures.

View Article and Find Full Text PDF

Many-body interactions in metal-organic frameworks (MOFs) are fundamental for emergent quantum physics. Unlike their solution counterpart, magnetization at surfaces in low-dimensional analogues is strongly influenced by magnetic anisotropy (MA) induced by the substrate and still not well understood. Here, on-surface coordination chemistry is used to synthesize on Ag(111) and superconducting Pb(111) an iron-based spin chain by using pyrene-4,5,9,10-tetraone (PTO) precursors as ligands.

View Article and Find Full Text PDF

In this study, we present the first experimental determination of the spin state of transition metal complexes by using Hirshfeld Atom Refinement. For the demonstration, the two iron(II) complexes, (NH)Fe(SO) ⋅ 6 HO and lFe(pic)jCl ⋅ EtOH were investigated. The method involves the refinement using wavefunctions of different spin multiplicity and comparison against experimental diffraction data by means of refinement indicators and residual electron density.

View Article and Find Full Text PDF

Influence of the second coordination sphere on O activation by a nonheme iron(II) thiolate complex.

J Inorg Biochem

March 2025

Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States. Electronic address:

The synthesis and characterization of a new ligand, 1-(bis(pyridin-2-ylmethyl) amino)-2-methylpropane-2-thiolate (BPAS) and its nonheme iron complex, Fe(BPAS)Br (1), is reported. Reaction of 1 with O at -20 °C generates a high-spin iron(III)-hydroxide complex, [Fe(OH)(BPAS)(Br)] (2), that was characterized by UV-vis, Fe Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies, and electrospray ionization mass spectrometry (ESI-MS). Density functional theory (DFT) calculations were employed to support the spectroscopic assignments.

View Article and Find Full Text PDF
Article Synopsis
  • - The compound polycrystalline [FeL2][BF4]2 demonstrates a significant hysteretic spin transition around 240 K, with its behavior influenced by sample history, consisting of two related high-spin polymorphs (HS1 and HS2).
  • - Upon cooling, both high-spin forms transition to low-spin phases (LS3 and LS4) at approximately 230 K, with LS3 coming from HS1 and LS4 from HS2, showing different crystal structures and transition temperatures.
  • - Repeated cycling through the spin transition results in a gradual increase of HS1 and LS3 phases while depleting HS2 and LS4, indicating complex phase behavior and sample-dependent characteristics across related iron(II) and
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!