Contribution of plasma membrane Ca ATPase to cerebellar synapse function.

World J Biol Chem

Helena Huang, Raghavendra Y Nagaraja, Ruth M Empson, Department of Physiology, Brain Health and Repair Research Centre, University of Otago, Dunedin, 9001, New Zealand.

Published: May 2010

The cerebellum expresses one of the highest levels of the plasma membrane Ca(2+) ATPase, isoform 2 in the mammalian brain. This highly efficient plasma membrane calcium transporter protein is enriched within the main output neurons of the cerebellar cortex; i.e. the Purkinje neurons (PNs). Here we review recent evidence, including electrophysiological and calcium imaging approaches using the plasma membrane calcium ATPase 2 (PMCA2) knockout mouse, to show that PMCA2 is critical for the physiological control of calcium at cerebellar synapses and cerebellar dependent behaviour. These studies have also revealed that deletion of PMCA2 throughout cerebellar development in the PMCA2 knockout mouse leads to permanent signalling and morphological alterations in the PN dendrites. Whilst these findings highlight the importance of PMCA2 during cerebellar synapse function and development, they also reveal some limitations in the use of the PMCA2 knockout mouse and the need for additional experimental approaches including cell-specific and reversible manipulation of PMCAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083959PMC
http://dx.doi.org/10.4331/wjbc.v1.i5.95DOI Listing

Publication Analysis

Top Keywords

plasma membrane
16
pmca2 knockout
12
knockout mouse
12
cerebellar synapse
8
synapse function
8
membrane calcium
8
pmca2 cerebellar
8
cerebellar
6
pmca2
6
contribution plasma
4

Similar Publications

Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.

Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.

View Article and Find Full Text PDF

Cryopreservation of bull sperm, crucial for breeding and assisted reproduction, often reduces sperm quality due to oxidative stress. This study examines how oxidative stress during cryopreservation affects peroxiredoxin 5 (PRDX5) and peroxiredoxin 6 (PRDX6) proteins, leading to their translocation and oligomerization in bull sperm. Increased reactive oxygen species (ROS) and nitric oxide (NO) levels were linked to reduced mitochondrial potential, higher DNA fragmentation, and increased membrane fluidity, prompting PRDX5 to move intracellularly and PRDX6 to the cell membrane.

View Article and Find Full Text PDF

Aquaculture is one of the world's fastest-growing sectors in food production but with multiple challenges related to animal handling and infections. The disease caused by infectious salmon anemia virus (ISAV) leads to outbreaks of local epidemics, reducing animal welfare, and causing significant economic losses. The composition of feed has shifted from marine ingredients such as fish oil and fish meal towards a more plant-based diet causing reduced levels of eicosapentaenoic acid (EPA).

View Article and Find Full Text PDF

Mitochondria are central to myriad biochemical processes, and thus even their moderate impairment could have drastic cellular consequences if not rectified. Here, to explore cellular strategies for surmounting mitochondrial stress, we conducted a series of chemical and genetic perturbations to Saccharomyces cerevisiae and analysed the cellular responses using deep multiomic mass spectrometry profiling. We discovered that mobilization of lipid droplet triacylglycerol stores was necessary for strains to mount a successful recovery response.

View Article and Find Full Text PDF

Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!