A semiconductor liquid-core optical fiber has been made by simply filling the hollow core of a capillary waveguide with nanoparticles suspended in toluene media. Under a low continuous optical power excitation at 532 nm, the emission of PbSe particles was clearly demonstrated in the infrared region and then partially maintained in the core of the fiber by the total internal reflection mechanism. Finally, due to the guided propagation, which results in multiple absorption effects, a linear shift of the emission peak toward longer wavelengths was observed (~0.32 nm/cm). As a proof of concept, this original demonstration of visible-to-infrared conversion could lead to the development of active fibered devices at wavelengths not covered by the conventional rare-earth ion doping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.36.001695 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!