Bedside barcode technology is used during medication administration to ensure patient safety. This study evaluated the workflow variables related to a bedside barcode technology-based medication administration process. A time-and-motion technique was used to assess the observational episodes related to medication administration conducted by registered nurses. In an observational episode, nurses spent adequate time in "documenting medications" and "giving medications." Nurses were primarily engaged in tasks at the patient's bedside.

Download full-text PDF

Source
http://dx.doi.org/10.1097/NCQ.0b013e318215b770DOI Listing

Publication Analysis

Top Keywords

medication administration
16
workflow variables
8
bedside barcode
8
descriptive analysis
4
analysis workflow
4
variables associated
4
associated barcode-based
4
barcode-based approach
4
medication
4
approach medication
4

Similar Publications

Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.

View Article and Find Full Text PDF

Gammaherpesviruses are oncogenic pathogens that establish lifelong infections. There are no FDA-approved vaccines against Epstein-Barr virus or Kaposi sarcoma herpesvirus. Murine gammaherpesvirus-68 (MHV68) infection of mice provides a system for investigating gammaherpesvirus pathogenesis and testing vaccine strategies.

View Article and Find Full Text PDF

Nasal spray treatments that inhibit the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) entry into nose and nasopharynx at early stages can be an appropriate approach to stop or delay the progression of the disease. We performed a prospective, randomized, double-blind, placebo-controlled, parallel-group, multicentric, phase II clinical trial comparing the rate of hospitalization due to COVID-19 infection between azelastine 0.1% nasal spray and placebo nasal spray treatment groups.

View Article and Find Full Text PDF

In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.

View Article and Find Full Text PDF

The Ebola virus (EBOV) causes severe disease in humans, and animal models are needed to evaluate the efficacy of vaccines and therapeutics. While non-human primate (NHP) and rodent EBOV infection models have been well characterized, there is a growing need for an intermediate model. Here, we provide the first report of a small-particle aerosol (AE) EBOV ferret model and disease progression compared with the intramuscular (IM) EBOV ferret model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!