We present a mathematical model that describes treatment of a fungal infection in an immune compromised patient in which both susceptible and resistant strains are present. The resulting nonlinear differential equations model the biological outcome, in terms of strain growth and cell number, when an individual, who has both a susceptible and a resistant population of fungus, is treated with a fungicidal or fungistatic drug. The model demonstrates that when the drug is only successful at treating the susceptible strain, low levels of the drug cause both strains to be in stable co-existence and high levels eradicate the susceptible strain while allowing the resistant strain to persist or to multiply unchecked. A modified model is then described in which the drug is changed to one in which both strains are susceptible, and subsequently, at the appropriate level of treatment, complete eradication of both fungal strains ensues. We discuss the model and implications for treatment options within the context of an immune compromised patient.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2011.04.007DOI Listing

Publication Analysis

Top Keywords

immune compromised
12
fungal infection
8
infection immune
8
compromised patient
8
susceptible resistant
8
susceptible strain
8
drug
5
model
5
susceptible
5
mathematical modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!