A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion. | LitMetric

Background: Chemotherapy heavily relies on apoptosis to kill breast cancer (BrCa) cells. Many breast tumors respond to chemotherapy, but cells that survive this initial response gain resistance to subsequent treatments. This leads to aggressive cell variants with an enhanced ability to migrate, invade and survive at secondary sites. Metastasis and chemoresistance are responsible for most cancer-related deaths; hence, therapies designed to minimize both are greatly needed. We have recently shown that CCR9-CCL25 interactions promote BrCa cell migration and invasion, while others have shown that this axis play important role in T cell survival. In this study we have shown potential role of CCR9-CCL25 axis in breast cancer cell survival and therapeutic efficacy of cisplatin.

Methods: Bromodeoxyuridine (BrdU) incorporation, Vybrant apoptosis and TUNEL assays were performed to ascertain the role of CCR9-CCL25 axis in cisplatin-induced apoptosis of BrCa cells. Fast Activated Cell-based ELISA (FACE) assay was used to quantify In situ activation of PI3Kp85, AktSer473, GSK-3βSer9 and FKHRThr24 in breast cancer cells with or without cisplatin treatment in presence or absence of CCL25.

Results: CCR9-CCL25 axis provides survival advantage to BrCa cells and inhibits cisplatin-induced apoptosis in a PI3K-dependent and focal adhesion kinase (FAK)-independent fashion. Furthermore, CCR9-CCL25 axis activates cell-survival signals through Akt and subsequent glycogen synthase kinase-3 beta (GSK-3β) and forkhead in human rhabdomyosarcoma (FKHR) inactivation. These results show that CCR9-CCL25 axis play important role in BrCa cell survival and low chemotherapeutic efficacy of cisplatin primarily through PI3K/Akt dependent fashion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3110128PMC
http://dx.doi.org/10.1186/1477-7819-9-46DOI Listing

Publication Analysis

Top Keywords

ccr9-ccl25 axis
20
breast cancer
16
brca cells
12
cell survival
12
ccr9-ccl25 interactions
8
interactions promote
8
cancer cell
8
fak-independent fashion
8
brca cell
8
axis play
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!