The Pseudomonas quinolone signal (PQS), and its precursor 2-heptyl-4-quinolone (HHQ), play a key role in coordinating virulence in the important cystic fibrosis pathogen Pseudomonas aeruginosa. The discovery of HHQ analogues in Burkholderia and other microorganisms led us to investigate the possibility that these compounds can influence interspecies behaviour. We found that surface-associated phenotypes were repressed in Gram-positive and Gram-negative bacteria as well as in pathogenic yeast in response to PQS and HHQ. Motility was repressed in a broad range of bacteria, while biofilm formation in Bacillus subtilis and Candida albicans was repressed in the presence of HHQ, though initial adhesion was unaffected. Furthermore, HHQ exhibited potent bacteriostatic activity against several Gram-negative bacteria, including pathogenic Vibrio vulnificus. Structure-function analysis using synthetic analogues provided an insight into the molecular properties that underpin the ability of these compounds to influence microbial behaviour, revealing the alkyl chain to be fundamental. Defining the influence of these molecules on microbial-eukaryotic-host interactions will facilitate future therapeutic strategies which seek to combat microorganisms that are recalcitrant to conventional antimicrobial agents.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2011.01121.xDOI Listing

Publication Analysis

Top Keywords

pseudomonas quinolone
8
quinolone signal
8
signal pqs
8
pqs precursor
8
compounds influence
8
gram-negative bacteria
8
hhq
6
precursor hhq
4
hhq modulate
4
modulate interspecies
4

Similar Publications

The impact of antioxidant-ciprofloxacin combinations on the evolution of antibiotic resistance in Pseudomonas aeruginosa biofilms.

NPJ Biofilms Microbiomes

December 2024

Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.

The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.

View Article and Find Full Text PDF

Unlabelled: The bacterium is an opportunistic pathogen that can cause lung, skin, wound, joint, urinary tract, and eye infections. While is known to exhibit a robust competitive response toward other bacterial species, this bacterium is frequently identified in polymicrobial infections where multiple species survive. For example, in prosthetic joint infections, can be identified along with other pathogenic bacteria including , , and .

View Article and Find Full Text PDF

Assessment of microbial antagonistic activity and Quorum Sensing Signal Molecule (Cyclopeptides-DKPs and N-Acyl Homoserine Lactones) detection in bacterial strains obtained from avocado thrips (Thysanoptera: Thripidae).

Biotechnol Rep (Amst)

March 2025

Microbiodiversity and bioprospection research group, Laboratorio de Biología Celular 19A-310, Molecular, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, 050034, Colombia.

The control of avocado pests and diseases heavily relies on the use of several types of pesticides, some of which are strictly monitored or not internationally accepted. New sources of bioactive molecules produced by phytopathogen-inhibiting microorganisms offer an excellent alternative for the control of pests and diseases. This study explores the potential antagonistic action against phytopathogenic microorganisms, using bacterial strains obtained from avocado thrips.

View Article and Find Full Text PDF

Migration of fungicides, antibiotics and resistome in the soil-lettuce system.

J Hazard Mater

November 2024

Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China. Electronic address:

The emergence and spread of antibiotic resistance genes (ARGs) have become a serious issue in global agricultural production. However, understanding how these ARGs spread across different spatial scales, especially when exposed to both pesticides and antibiotics, has remained a challenge. Here, metagenomic assembly and binning methodologies were used to determine the spread pathway of ARGs in the soil-lettuce system under individual and combined exposure of fungicides (carbendazim and pyraclostrobin) and antibiotics (chlortetracycline and ciprofloxacin).

View Article and Find Full Text PDF

Background: Infections by carbapenem-resistant Pseudomonas aeruginosa (CRPA) have been associated with high morbidity and mortality among solid organ recipients.

Objectives: To delineate the epidemiological and molecular characteristics of a recurrent outbreak of imipenem (IMP)-producing P. aeruginosa (CRPA) among kidney transplant (KT) recipient METHODS: We described a recurring CRPA outbreak in a KT ward, divided into two periods: before unit closure (Feb 2019-2020) and after reopening (Aug 2020-Dec 2023).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!