Disabled-2 (Dab2) inhibits platelet aggregation by competing with fibrinogen for binding to the α(IIb) β(3) integrin receptor, an interaction that is modulated by Dab2 binding to sulfatides at the outer leaflet of the platelet plasma membrane. The disaggregatory function of Dab2 has been mapped to its N-terminus phosphotyrosine-binding (N-PTB) domain. Our data show that the surface levels of P-selectin, a platelet transmembrane protein known to bind sulfatides and promote cell-cell interactions, are reduced by Dab2 N-PTB, an event that is reversed in the presence of a mutant form of the protein that is deficient in sulfatide but not in integrin binding. Importantly, Dab2 N-PTB, but not its sulfatide binding-deficient form, was able to prevent sulfatide-induced platelet aggregation when tested under haemodynamic conditions in microfluidic devices at flow rates with shear stress levels corresponding to those found in vein microcirculation. Moreover, the regulatory role of Dab2 N-PTB extends to platelet-leucocyte adhesion and aggregation events, suggesting a multi-target role for Dab2 in haemostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2141.2011.08705.x | DOI Listing |
J Biol Chem
November 2012
Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Tech, 1981 Kraft Dr., Rm. 2007, Blacksburg, VA 24061, USA.
Disabled-2 (Dab2) targets membranes and triggers a wide range of biological events, including endocytosis and platelet aggregation. Dab2, through its phosphotyrosine-binding (PTB) domain, inhibits platelet aggregation by competing with fibrinogen for α(IIb)β(3) integrin receptor binding. We have recently shown that the N-terminal region, including the PTB domain (N-PTB), drives Dab2 to the platelet membrane surface by binding to sulfatides through two sulfatide-binding motifs, modulating the extent of platelet aggregation.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2011
Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
Disabled-2 (Dab2) is an adaptor protein involved in several biological processes ranging from endocytosis to platelet aggregation. During endocytosis, the Dab2 phosphotyrosine-binding (PTB) domain mediates protein binding to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) at the inner leaflet of the plasma membrane. As a result of platelet activation, Dab2 is released from α-granules and associates with both the αIIbβ3 integrin receptor and sulfatide lipids on the platelet surface through its N-terminal region including the PTB domain (N-PTB), thus, modulating platelet aggregation.
View Article and Find Full Text PDFBr J Haematol
July 2011
Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
Disabled-2 (Dab2) inhibits platelet aggregation by competing with fibrinogen for binding to the α(IIb) β(3) integrin receptor, an interaction that is modulated by Dab2 binding to sulfatides at the outer leaflet of the platelet plasma membrane. The disaggregatory function of Dab2 has been mapped to its N-terminus phosphotyrosine-binding (N-PTB) domain. Our data show that the surface levels of P-selectin, a platelet transmembrane protein known to bind sulfatides and promote cell-cell interactions, are reduced by Dab2 N-PTB, an event that is reversed in the presence of a mutant form of the protein that is deficient in sulfatide but not in integrin binding.
View Article and Find Full Text PDFPLoS One
November 2009
Protein Signaling Domains Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America.
Background: Platelets contact each other at the site of vascular injury to stop bleeding. One negative regulator of platelet aggregation is Disabled-2 (Dab2), which is released to the extracellular surface upon platelet activation. Dab2 inhibits platelet aggregation through its phosphotyrosine-binding (PTB) domain by competing with fibrinogen for alphaIIbbeta3 integrin receptor binding by an unknown mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!