In the search of Ni based metal-organic frameworks (MOFs) containing paddle-wheel type building units, three chemical systems Ni(2+)/H(n)L/base/solvent with H(n)L = H(3)BTC (1,3,5-benzenetricarboxylic acid), H(3)BTB (4,4',4'',-benzene-1,3,5-triyl-tris(benzoic acid)), and H(2)BDC (terephthalic acid) were investigated using high-throughput (HT) methods. In addition to the conventional heating, for the first time HT microwave assisted synthesis of MOFs was carried out. Six new compounds were discovered, and their fields of formation were established. In the first system, H(3)BTC was employed and a comprehensive HT-screening of compositional and process parameters was conducted. The synthesis condition for the Ni paddle-wheel unit was determined and two compounds [Ni(3)(BTC)(2)(Me(2)NH)(3)]·(DMF)(4)(H(2)O)(4) (1a) and [Ni(6)(BTC)(2)(DMF)(6)(HCOO)(6)] (1b) were discovered (Me(2)NH = dimethylamine, DMF = dimethylformamide). In the second system, the use of the extended tritopic linker H(3)BTB and the synthesis conditions for the paddle-wheel units led to the porous MOF, [Ni(3)(BTB)(2)(2-MeIm)(1.5)(H(2)O)(1.5)]·(DMF)(9)(H(2)O)(6.5) (2), (2-MeIm = 2-methylimidazole). This compound shows a selective adsorption of H(2)O and H(2) with a strong hysteresis. In the third system, H(2)BDC was used, and the base (DABCO) was incorporated as a bridging ligand into all structures. Thus, two pillared layered porous MOFs [Ni(2)(BDC)(2)(DABCO)]·(DMF)(4)(H(2)O)(1.5) (3a) and [Ni(2)(BDC)(2)(DABCO)]·(DMF)(4)(H(2)O)(4) (3b) as well as a layered compound [Ni(BDC)(DABCO)]·(DMF)(1.5)(H(2)O)(2) (3c) were isolated. The 3a and 3b polymorphs of the [Ni(2)(BDC)(2)(DABCO)] framework can be selectively synthesized. The combination of microwave assisted heating, low overall concentration, stirring of the reaction mixtures, and an excess of DABCO yields a highly crystalline pure phase of 3b. The fields of formation of all compounds were established, and scale-up was successfully performed for 1b, 2, 3a, 3b, and 3c. All compounds were structurally characterized. In addition to IR, elemental and TG analyses, gas and vapor sorption experiments were carried out.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic200381fDOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
8
paddle-wheel type
8
building units
8
high-throughput methods
8
microwave assisted
8
fields formation
8
investigation porous
4
porous ni-based
4
ni-based metal-organic
4
paddle-wheel
4

Similar Publications

An effective approach for the immobilization and protection of biological entities is their encapsulation via the in situ synthesis of metal-organic frameworks (MOFs). To ensure the preservation of the bioentities, mild synthetic conditions, including aqueous media and ambient conditions (temperature and pressure), are preferred. In this study, we investigated the synthesis of various aluminum polycarboxylate-based MOFs, including the fumarate, terephthalate, amino-terephthalate, and muconate forms of MIL-53(Al), as well as the MIL-110 and MIL-160 MOF types.

View Article and Find Full Text PDF

Nanoparticles of highly porous metal-organic frameworks (MOFs) are some of the most exciting nanomaterials under development, with potential applications that range from biomedicine and catalysis to adsorption technologies. However, our synthetic methodologies to functionalize and manipulate MOF nanoparticles (NPs) are less well developed than they might be. Here we create MOF NPs derivatized with hydrazone units on their exterior, enabling chemospecific reversible dynamic covalent modification of structures on the external surface.

View Article and Find Full Text PDF

Integration of ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of tetracycline based on a novel Zn (II) functionalized magnetic covalent organic framework.

Anal Chim Acta

March 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:

Background: Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC.

View Article and Find Full Text PDF

General design of self-supported Co-Ni/nitrogen-doped carbon nanotubes array for efficient oxygen evolution reaction.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China. Electronic address:

The development of earth-abundant oxygen evolution reaction (OER) electrocatalysts with high activity and durability is critical for replacing noble-metal-based catalysts in the applications of scalable water electrolysis. A freestanding electrode architecture offers significant advantages over conventional coated powder forms due to enhanced kinetics and stability. However, precise control over electrode composition and the construction of uniformly distributed active sites within these electrodes remain challenging.

View Article and Find Full Text PDF

This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!