Two structurally characterized manganese [L(2)Mn(CO)(4)](+)[Mn(CO)(5)](-) (1) and rhenium [L(3)Re(CO)(3)](+)[ReCO)(5)](-) (2) silylene complexes were prepared in one pot syntheses by reacting 1 equivalent of Mn(2)(CO)(10) with 2 equivalents of stable N-heterocyclic chlorosilylene L {L = PhC(NtBu)(2)SiCl} and 1 equivalent of Re(2)(CO)(10) with 3 equivalents of L in toluene at room temperature. Both complexes 1 and 2 were characterized by single-crystal X-ray structural analysis, NMR and IR spectroscopy, EI-MS spectrometry, and elemental analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic2003035DOI Listing

Publication Analysis

Top Keywords

stable n-heterocyclic
8
n-heterocyclic chlorosilylene
8
syntheses group
4
group metal
4
metal carbonyl
4
carbonyl complexes
4
complexes stable
4
chlorosilylene structurally
4
structurally characterized
4
characterized manganese
4

Similar Publications

The use of gold nanoclusters in biomedical applications has been steadily increasing in recent years. However, water solubility is a key factor for these applications, and water-soluble gold nanoclusters are often difficult to isolate and susceptible to exchange or oxidation in vivo. Herein, we report the isolation of N-heterocyclic carbene (NHC)-protected atomically precise gold nanoclusters functionalized with triethylene glycol monomethyl ether groups.

View Article and Find Full Text PDF

Harnessing Multi-Center-2-Electron Bonds for Carbene Metal-Hydride Nanocluster Catalysis.

Angew Chem Int Ed Engl

January 2025

CNRS/UCSD, Chemistry, University of California, San Diego, 5213 Pacific Hall,, Department of Chemistry, 92093-0343, La jolla, UNITED STATES.

N-Heterocyclic carbene (NHC) ligands possess the ability to stabilize metal-based nanomaterials for a broad range of applications. With respect to metal-hydride nanomaterials, however, carbenes are rare, which is surprising if one considers the importance of metal-hydride bonds across the chemical sciences. In this study, we introduce a bottom-up approach leveraging preexisting metal-metal m-center-n-electron (mc-ne) bonds to access a highly stable cyclic(alkyl)amino carbene (CAAC) copper-hydride nanocluster, [(CAAC)6Cu14H12][OTf]2 with superior stability compared to Stryker's reagent, a popular commercial phosphine-based copper hydride catalyst.

View Article and Find Full Text PDF

Neutral mesoionic carbenes (MICs) based on a 1,2,3-triazole core have had a strong impact on various branches of chemistry such as homogeneous catalysis, electrocatalysis, and photochemistry/photophysics. We present here the first general synthesis of anionic mesoionic carbenes (anMICs) based on a 1,2,3-triazole core and a borate backbone. The free anMIC is stable in solution under an inert atmosphere at low temperatures, and can be stored for several weeks.

View Article and Find Full Text PDF

B- and N-heterocyclic fluorophores have reveal promising efficiency in blue organic light-emitting diodes (OLEDs) with small full-width-at-half-maximum (FWHM). However, their structural determinants for spectral broadening and operating stability are still needed to be investigated in further. Herein, a novel multi-N-heterocycles Diindolo[3,2,1jk:3',2',1'jk]dicarbazole[1,2-b:4,5-b] (DIDCz) is proposed to manipulate the emission color toward pure blue region by extending π-conjugation of the N-π-N bridge.

View Article and Find Full Text PDF

Photocatalytic Direct Borylation of Benzothiazole Heterocycles via a Triplet Activation Strategy.

Org Lett

January 2025

Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.

Boron compounds are widely employed in organic chemistry, pharmaceuticals, and materials science. Among them, borylated heterocycles serve as versatile synthons for the construction of new C-C or C-heteroatom bonds via coupling or radical processes. Such methods for direct C-H borylation reactions are of high synthetic value to reduce the number of synthetic steps and the amount of waste and to improve efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!