Spermiogenesis and the ultrastructural organisation of the spermatozoon of the trypanorhynch cestode Aporhynchus menezesi Noever, Caira, Kuchta et Desjardins, 2010 are described by means of transmission electron microscopy. Type I spermiogenesis of A. menezesi starts with the formation of a differentiation zone containing two centrioles separated by an intercentriolar body constituted by five electron-dense plates. Each centriole gives rise to a free flagellum, which grows at an angle of 90 degrees in relation to a median cytoplasmic process. The nucleus and cortical microtubules elongate along the spermatid body. Later, both flagella rotate and fuse with the median cytoplasmic process. At the final stage of spermiogenesis, the young spermatozoon is detached from the residual cytoplasm by a narrowing of the ring of arched membranes. The mature spermatozoon is a long and filiform cell, tapered at both ends, lacking mitochondria. It is characterized by the presence of two axonemes of the 9+'1' trepaxonematan pattern, the absence of crested bodies, the presence of parallel cortical microtubules and nucleus. This pattern corresponds to the type I spermatozoon of the eucestodes. The anterior extremity of the spermatozoon is characterized by the presence of an arc-like row of up to seven parallel cortical microtubules that partially surrounds the first axoneme. These anterior cortical microtubules are thicker than the posterior microtubules and, consequently, the sperm cell of A. menezesi exhibits two types of cortical microtubules. Another interesting aspect is the presence of alpha-glycogen rosettes. This spermatological pattern is similar to that observed in the spathebothriidean and diphyllobothriidean cestodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14411/fp.2011.007 | DOI Listing |
Learn Mem
January 2025
Psychology Department, Hunter College, City University of New York, New York, New York 10065, USA
Social isolation is a risk factor for cognitive impairment. Adolescents may be particularly vulnerable to these effects, because they are in a critical period of development marked by significant physical, hormonal, and social changes. However, it is unclear if the effects of social isolation on learning and memory are similar in both sexes or if they persist into adulthood after a period of recovery.
View Article and Find Full Text PDFJ Neurol
January 2025
Centre de Génétique Humaine, Centre Hospitalier Universitaire de Besançon, Besançon, France.
Introduction: The MAPT gene encodes Tau, a protein mainly expressed by neurons. Tau protein plays an important role in cerebral microtubule polymerization and stabilization, in axonal transport and synaptic plasticity. Heterozygous pathogenic variation in MAPT are involved in a spectrum of autosomal dominant neurodegenerative diseases known as taupathies, including Alzheimer's disease, Pick's disease, fronto-temporal dementia, cortico-basal degeneration and progressive supranuclear palsy.
View Article and Find Full Text PDFF1000Res
January 2025
Faculty of Teaching and Education Sciences, Islamic University of Malang, Malang, East Java, Indonesia.
Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Neurosurgery, Wuhan NO.1 Hospital, Wuhan 432000, China. *Corresponding author, E-mail:
Objective To investigate the effects and molecular mechanism of Homer protein homolog 1a (Homer 1a) overexpression on nerve injury in mice with traumatic brain injury (TBI). Methods Sixty male C57BL/6 mice were randomly divided into five groups: sham group, TBI group, empty lentivirus (Lv-NC) group, Homer 1a overexpression lentivirus (Lv-Homer 1a) group and Lv-Homer 1a + 740 Y-P group, with 12 mice in each group. The lentivirus was orthotopic injected into the cerebral cortex of mice 5 d before modeling, while 740 Y-P was injected intraperitoneally 1 d before modeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!