Development and evaluation of a dynamic model that projects population biomarkers of methylmercury exposure from local fish consumption.

Integr Environ Assess Manag

Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky 40202, USA.

Published: October 2011

A dynamic model was developed to project Hg concentrations in common biomarkers of exposure in response to changes in Hg concentrations in predatory fish from local waters. The model predicts biomarkers in susceptible populations for intake rates representing the mean, 90th, 95th, and 99 th percentiles of populations of interest. The biomarkers the model calculates are blood methylmercury, total hair Hg, and fetal blood methylmercury. Decision makers can use the model to determine the degree of reduction in fish tissue Hg levels necessary to protect the health of susceptible populations. Biomarker output was calibrated with literature sources. Output was then compared to additional literature sources to evaluate model function. Projected biomarkers were not different from literature sources. The model can be used as a tool to understand the impact of local fish consumption on susceptible populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826604PMC
http://dx.doi.org/10.1002/ieam.214DOI Listing

Publication Analysis

Top Keywords

susceptible populations
12
literature sources
12
dynamic model
8
local fish
8
fish consumption
8
blood methylmercury
8
model
7
biomarkers
5
development evaluation
4
evaluation dynamic
4

Similar Publications

Age is associated with increased tissue stiffness and a higher risk of low back pain, particularly in older, sedentary workers who spend long periods sitting. This study explored how trunk stiffness changes with age and its relationship with posture during prolonged sitting in a sample of 37 women aged 20-65 years. Age was assessed as both Chronological Age and Fitness Age, with trunk stiffness measured using a passive trunk flexion apparatus.

View Article and Find Full Text PDF

The Role of Gut Microbiota in Shaping Immune Responses in Tephritidae Fruit Fly and Prospective Implications for Management.

Neotrop Entomol

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Bio Pesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry Univ, Fuzhou, China.

The interaction of microbial communities with host immunity has become one of the most explored research areas with significant implications for pest control strategies. It has been found that the gut microbiota plays substantial roles in immune response regulation and host-gut microbiome symbiosis, as well as in pathogen resistance and overall fitness in Tephritidae fruit flies that are major pests of agricultural importance. In this review, we discuss the modulation of immune responses of Tephritidae fruit flies by the gut microbiota with particular emphasis on the general interactions between microbiota and the immune system.

View Article and Find Full Text PDF

Population studies provide insights into the interplay between the gut microbiome and geographical, lifestyle, genetic and environmental factors. However, low- and middle-income countries, in which approximately 84% of the world's population lives, are not equitably represented in large-scale gut microbiome research. Here we present the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome study sampling 1,801 women from Burkina Faso, Ghana, Kenya and South Africa.

View Article and Find Full Text PDF

Since the onset of the pandemic, many SARS-CoV-2 variants have emerged, exhibiting substantial evolution in the virus' spike protein, the main target of neutralizing antibodies. A plausible hypothesis proposes that the virus evolves to evade antibody-mediated neutralization (vaccine- or infection-induced) to maximize its ability to infect an immunologically experienced population. Because viral infection induces neutralizing antibodies, viral evolution may thus navigate on a dynamic immune landscape that is shaped by local infection history.

View Article and Find Full Text PDF

Marek's disease (MD), a T cell lymphoma disease in chickens, is caused by the Marek's disease virus (MDV) found ubiquitously in the poultry industry. Genetically resistant Line 6 (L6) and susceptible Line 7 (L7) chickens have been instrumental to research on avian immune system response to MDV infection. In this study we characterized molecular signatures unique to splenic immune cell types across different genetic backgrounds 6 days after infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!