The contribution of heme oxygenase (HO)-linked pathways to neurodegeneration following cerebral hypoxia-ischemia (HI) remains unclear. We investigated whether HO modulators affected HI-induced brain damage and explored potential mechanisms involved. HI was induced in 26-day-old male Wistar rats by left common carotid artery ligation, followed by exposure to a humidified atmosphere of 8% oxygen for 1 hr. Tin protoporphyrin (SnPP; an HO inhibitor), ferriprotoporphyrin (FePP; an HO inducer), or saline was administered intraperitoneally once daily from 1 day prior to HI until sacrifice at 3 days post-HI. SnPP reduced (P < 0.05) infarct volume compared with saline-treated animals, but FePP had no effect on brain injury. SnPP did not significantly inhibit HO activity at 3 days post-HI, but SnPP increased (P < 0.001) total nitric oxide synthase (NOS) activity compared with HI + saline. Both inducible NOS and cyclooxygenase activities were attenuated (P < 0.05) by SnPP, whereas mitochondrial complex I and V activities were augmented (P < 0.05) by SnPP. SnPP had no effect on NMDA receptor currents. Overall, like other HO inhibitors, SnPP produced many nonselective effects, such as attenuation of inflammatory enzymes and increased mitochondrial respiratory function, which were associated with a protective response 3 days post-HI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.22661 | DOI Listing |
Introduction: Brain cholesterol relies on de novo biosynthesis and is crucial for brain development. Cholesterol synthesis is a complex series of reactions that involves more than twenty enzymes to reach the final product and generates a large number of intermediate sterols along two alternate pathways. This is a highly regulated and oxygen-dependent process, and thus sensitive to hypoxia.
View Article and Find Full Text PDFNutrients
July 2024
Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands.
Neonatal hypoxic-ischemic (HI) brain injury is a prominent cause of neurological morbidity, urging the development of novel therapies. Interventions with -3 long-chain polyunsaturated fatty acids (-3 LCPUFAs) and mesenchymal stem cells (MSCs) provide neuroprotection and neuroregeneration in neonatal HI animal models. While lysophosphatidylcholine (LPC)-bound -3 LCPUFAs enhance brain incorporation, their effect on HI brain injury remains unstudied.
View Article and Find Full Text PDFNMR Biomed
October 2024
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Hypoxic-ischemic encephalopathy (HIE) is a common neurological syndrome in newborns with high mortality and morbidity. Therapeutic hypothermia (TH), which is standard of care for HIE, mitigates brain injury by suppressing anaerobic metabolism. However, more than 40% of HIE neonates have a poor outcome, even after TH.
View Article and Find Full Text PDFExp Neurol
August 2024
Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA. Electronic address:
Neonatal hypoxia-ischemia (HI) results in behavioral deficits, characterized by neuronal injury and retarded myelin formation. To date, limited treatment methods are available to prevent or alleviate neurologic sequelae of HI. Intermittent theta-burst stimulation (iTBS), a non-invasive therapeutic procedure, is considered a promising therapeutic tool for treating some neurocognitive disorders and neuropsychiatric diseases.
View Article and Find Full Text PDFStem Cell Res Ther
May 2024
Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Internal post: KC03.068.0, PO Box 85090, Utrecht, 3508 AB, The Netherlands.
Background: Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!