The organization of room geometry and object layout geometry in human memory.

Psychon Bull Rev

The Richard Stockton College of New Jersey, School of Social and Behavioral Sciences, P.O. Box 195, Pomona, NJ 08240, USA.

Published: August 2011

Research with humans and with nonhuman species has suggested a special role of room geometry in spatial memory functioning. In two experiments, participants learned the configuration of a room with four corners, along with the configuration of four objects within the room, while standing in a fixed position at the room's periphery. The configurations were either rectangular (Experiment 1) or irregular (Experiment 2). Room geometry was not recalled better than object layout geometry, and memories for both configurations were orientation dependent. These results suggest that room geometry and object layout geometry are represented similarly in human memory, at least in situations that promote long-term learning of object locations. There were also some differences between corners and objects in orientation dependence, suggesting that the two sources of information are represented in similar but separate spatial reference systems. [corrected]

Download full-text PDF

Source
http://dx.doi.org/10.3758/s13423-011-0098-5DOI Listing

Publication Analysis

Top Keywords

room geometry
16
object layout
12
layout geometry
12
geometry object
8
human memory
8
geometry
7
room
5
organization room
4
object
4
geometry human
4

Similar Publications

The asymmetric Schiff base prepared from ethylenediamine and pyridine-2-carboxaldehyde reacts with Fe(ClO)·6HO to form the Fe(II) complex [FeL](ClO) with L = ,-diethyl-'-(pyridin-2-yl)methylene)ethane-1,2-diamine, where the Fe(III) starting material has been unexpectedly reduced to Fe(II). This complex was characterized by elemental analysis, infrared spectra, single crystal and powder X-ray diffraction measurements, variable temperature DC magnetic measurement and room temperature Mössbauer spectroscopy. The asymmetric ligand L coordinates in a tridentate fashion through its pyridyl, azomethine and amino nitrogen atoms, generating a distorted octahedral geometry around the central metal ion.

View Article and Find Full Text PDF

Macroscopic coherence in quantum fluids allows the observation of interference effects in their wavefunctions, and enables applications such as superconducting quantum interference devices based on Josephson tunneling. The Josephson effect manifests in both fermionic and bosonic systems, and has been well studied in superfluid helium and atomic Bose-Einstein condensates. In exciton-polariton condensates-that offer a path to integrated semiconductor platforms-creating weak links in ring geometries has so far remained challenging.

View Article and Find Full Text PDF

Interaction of a novel dihydroxy dibenzoazacrown (HDTC) with various surfactants of different charges, for example, anionic (sodium dodecylsulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), cationic gemini (butanediyl-1,4-bis(dimethylcetylammonium bromide), 16-4-16), ionic liquid (1-hexadecyl-3-methylimidazolium chloride, CMImCl), and nonionic (polyoxyethylene sorbitan monostearate, Tween-60), has been investigated at a widespread range of surfactant concentrations (including premicellar, micellar, and postmicellar regime) in 15% (v/v) EtOH medium at room temperature. Several experimental techniques, viz., tensiometry, UV-vis spectroscopy, and steady-state fluorimetry, are implemented to explicate these interactions.

View Article and Find Full Text PDF
Article Synopsis
  • BOMD simulations were conducted to explore the structure and dynamics of hydration shells around five trivalent lanthanide ions at room temperature, revealing complexities in accurately classifying their molecular geometry.
  • A cluster microsolvation approach was used, involving interactions of Ln ions (La, Nd, Gd, Er, Lu) with up to 27 water molecules, validating the effectiveness of the rSCAN-3c method in predicting average Ln-O distances and coordination numbers.
  • The study found that the first hydration shells displayed significant dynamism with varying coordination geometries, highlighting the efficiency of microsolvation models in replicating the solvation structures of these rare-earth ions and improving understanding of water dynamics around them.
View Article and Find Full Text PDF

Context: Hydrogen storage in porous nanostructured compounds have recently attracted a lot of attention due to the fact that the underlying adsorption mechanism and thermodynamics provide suitable platform for room temperature adsorption and desorption of H molecules. This work reports the findings of a study on the reversible hydrogen storage capacities of Sc and Y decorated C fullerene, conducted using dispersion-corrected density functional theory (DFT) calculation. The transition metal (TM) atoms, such as Sc and Y, are identified to attach to the C-C bridge position of the C fullerene through non-covalent closed-shell interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!