Research with humans and with nonhuman species has suggested a special role of room geometry in spatial memory functioning. In two experiments, participants learned the configuration of a room with four corners, along with the configuration of four objects within the room, while standing in a fixed position at the room's periphery. The configurations were either rectangular (Experiment 1) or irregular (Experiment 2). Room geometry was not recalled better than object layout geometry, and memories for both configurations were orientation dependent. These results suggest that room geometry and object layout geometry are represented similarly in human memory, at least in situations that promote long-term learning of object locations. There were also some differences between corners and objects in orientation dependence, suggesting that the two sources of information are represented in similar but separate spatial reference systems. [corrected]
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13423-011-0098-5 | DOI Listing |
R Soc Open Sci
January 2025
Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia.
The asymmetric Schiff base prepared from ethylenediamine and pyridine-2-carboxaldehyde reacts with Fe(ClO)·6HO to form the Fe(II) complex [FeL](ClO) with L = ,-diethyl-'-(pyridin-2-yl)methylene)ethane-1,2-diamine, where the Fe(III) starting material has been unexpectedly reduced to Fe(II). This complex was characterized by elemental analysis, infrared spectra, single crystal and powder X-ray diffraction measurements, variable temperature DC magnetic measurement and room temperature Mössbauer spectroscopy. The asymmetric ligand L coordinates in a tridentate fashion through its pyridyl, azomethine and amino nitrogen atoms, generating a distorted octahedral geometry around the central metal ion.
View Article and Find Full Text PDFNat Commun
January 2025
CNR Nanotec, Institute of Nanotechnology, via Monteroni, 73100, Lecce, Italy.
Macroscopic coherence in quantum fluids allows the observation of interference effects in their wavefunctions, and enables applications such as superconducting quantum interference devices based on Josephson tunneling. The Josephson effect manifests in both fermionic and bosonic systems, and has been well studied in superfluid helium and atomic Bose-Einstein condensates. In exciton-polariton condensates-that offer a path to integrated semiconductor platforms-creating weak links in ring geometries has so far remained challenging.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
Interaction of a novel dihydroxy dibenzoazacrown (HDTC) with various surfactants of different charges, for example, anionic (sodium dodecylsulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), cationic gemini (butanediyl-1,4-bis(dimethylcetylammonium bromide), 16-4-16), ionic liquid (1-hexadecyl-3-methylimidazolium chloride, CMImCl), and nonionic (polyoxyethylene sorbitan monostearate, Tween-60), has been investigated at a widespread range of surfactant concentrations (including premicellar, micellar, and postmicellar regime) in 15% (v/v) EtOH medium at room temperature. Several experimental techniques, viz., tensiometry, UV-vis spectroscopy, and steady-state fluorimetry, are implemented to explicate these interactions.
View Article and Find Full Text PDFACS Omega
December 2024
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México.
J Mol Model
December 2024
Computational Materials Research Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
Context: Hydrogen storage in porous nanostructured compounds have recently attracted a lot of attention due to the fact that the underlying adsorption mechanism and thermodynamics provide suitable platform for room temperature adsorption and desorption of H molecules. This work reports the findings of a study on the reversible hydrogen storage capacities of Sc and Y decorated C fullerene, conducted using dispersion-corrected density functional theory (DFT) calculation. The transition metal (TM) atoms, such as Sc and Y, are identified to attach to the C-C bridge position of the C fullerene through non-covalent closed-shell interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!