Purpose: Although intracranial pressure (ICP) monitoring is a cornerstone of care for severe traumatic brain injury (TBI), the indications for ICP monitoring in children are unclear. Often, decisions are based on head computed tomography (CT) scan characteristics. Arguably, the patency of the basal cisterns is the most commonly used of these signs. Although raised ICP is more likely with obliterated basal cisterns, the implications of open cisterns are less clear. We examined the association between the status of perimesencephalic cisterns and time-linked ICP values in paediatric severe TBI.
Methods: ICP data linked to individual head CT scans were reviewed. Basal cisterns were classified as open or closed by blinded reviewers. For the initial CT scan, we examined ICP values for the first 6 h after monitor insertion. For follow-up scans, we examined ICP values 3 h before and after scanning. Mean ICP and any episode of ICP ≥ 20 mmHg during this period were recorded.
Results: Data from 104 patients were examined. Basal cisterns were patent in 51.72% of scans, effaced in 34.48% and obliterated in 13.79%. Even when cisterns were open, more than 40% of scans had at least one episode of ICP ≥ 20 mmHg, and 14% of scans had a mean ICP ≥ 20 mmHg. The specificity of open cisterns in predicting ICP < 20 mmHg was poor (57.9%). Age-related data were worse.
Conclusion: Children with severe TBI frequently may have open basal cisterns on head CT despite increased ICP. Open cisterns should not discourage ICP monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00381-011-1464-3 | DOI Listing |
Anesthesiology
January 2025
Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Germany.
Background: According to the model of the glymphatic system, the directed flow of cerebrospinal fluid (CSF) is a driver of waste clearance from the brain. In sleep, glymphatic transport is enhanced, but it is unclear how it is affected by anesthesia. Animal research indicates partially opposing effects of distinct anesthetics but corresponding results in humans are lacking.
View Article and Find Full Text PDFNeurocrit Care
January 2025
Department of Health Research, Medical Technology, SINTEF, Trondheim, Norway.
Background: Optic nerve sheath diameter (ONSD) is a promising noninvasive parameter for intracranial pressure (ICP) assessment. However, in the setting of aneurysmal subarachnoid hemorrhage (aSAH), several previous studies have reported no association between ultrasonically measured ONSD and ICP. In this study, we evaluate ONSD in patients with aSAH using a novel method of automated real-time ultrasonographic measurements and explore whether factors such as having undergone surgery affects its association to ICP.
View Article and Find Full Text PDFChildren (Basel)
November 2024
Neurosurgery Department, University Hospital of Heraklion, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece.
Background/objectives: Intracranial arachnoid cysts (ACs) may be congenital, primary, or secondary due to trauma. These cysts are benign, contain cerebrospinal fluid (CSF), and are classified based on location, size, and their clinical symptomatology. They are uncommon lesions in children, rarely leading to severe mass-effect neurological symptomatology.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurology, Mayo Clinic, Jacksonville, MN, USA.
We developed a simple quantifiable scoring system that predicts aneurysmal subarachnoid hemorrhage (aSAH) mortality, delayed cerebral ischemia (DCI), and modified Rankin scale (mRS) outcomes using readily available SAH admission data with SAH volume (SAHV) measured on computed tomography (CT). We retrospectively analyzed a cohort of 277 patients with aSAH admitted at our Comprehensive Stroke Center at Mayo Clinic in Jacksonville, Florida, between January 5, 2012, and February 24, 2022. We developed a mathematical radiographic model SAHV that measures basal cisternal SAH blood volume using a derivation of the ABC/2 ellipsoid formula (A = width/thickness, B = length, C = vertical extension) on noncontrast CT, which we previously demonstrated is comparable to pixel-based manual segmentation on noncontrast CT.
View Article and Find Full Text PDFChin Neurosurg J
December 2024
Department of Neurosurgery, Hebei Children's Hospital, Hebei Medical University, Shijiazhuang, Hebei, China.
Background: A nonadjustable state of the programmable shunt valve is a rare phenomenon. This case report aims to explore the cause of pressure adjustment dysfunction in a programmable shunt valve in a middle cranial fossa arachnoid cyst-peritoneal shunt patient and to underscore this dysfunction as an indicator of shunt valve obstruction.
Case Presentation: A child with a ruptured giant arachnoid cyst in the left middle cranial fossa presented with acute intracranial hypertension following head trauma.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!