Inducibility of three salinity/abscisic acid-regulated promoters in transgenic rice with gusA reporter gene.

Plant Cell Rep

Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Kolkata 700019, West Bengal, India.

Published: September 2011

The present study evaluates the pattern of stress inducibility of one natural promoter (from rice Rab16A) and two synthetically designed promoters, viz., 4X ABRE (abscisic acid-responsive element, having four tandem repeats of ABRE) and 2X ABRC (abscisic acid-responsive complex, having two tandem repeats of ABRE and two copies of coupling elements), in response to varying concentrations of NaCl and abscisic acid (ABA). Each promoter, independently linked to gusA (that encodes β glucuronidase, GUS), was introduced into rice (cv. Khitish) through particle bombardment. The T(2) progenies showed integration of gusA in their genome. The accumulation of gusA transcript, driven by each promoter in T(2) transgenics, increased with increasing salt/ABA concentration, with ABA being the better activator of each promoter. Induction in GUS expression, driven by different promoters, was noted on exogenous salt/ABA treatments in a concentration-dependent manner. The maximum induction was observed with 2X ABRC promoter. All the three promoters could drive stress-inducible GUS expression in both vegetative and floral organs. However, prominent GUS expression was noted in the whole seed (both embryo and aleurone layer of endosperm) only by 2X ABRC, whereas it was localized only in the embryo for the other two promoters. Thus, our observation characterizes three efficient salinity/ABA-inducible promoters that have the potentiality in crop biotechnology to drive transgene expression for stress tolerance, whenever abiotic stress is encountered.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-011-1072-4DOI Listing

Publication Analysis

Top Keywords

gus expression
12
abscisic acid-responsive
8
tandem repeats
8
repeats abre
8
promoters
6
promoter
5
inducibility three
4
three salinity/abscisic
4
salinity/abscisic acid-regulated
4
acid-regulated promoters
4

Similar Publications

ERF56, a member of the APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) transcription factor (TF) family, was reported to be an early nitrate-responsive TF in . But the function of in nitrate signaling remains not entirely clear. This study aimed to investigate the role of in nitrate-dependent plant growth and nitrate signaling.

View Article and Find Full Text PDF

Characteristics and Functions of , a Terpenoid Synthesis-Related Gene in Lamb.

Int J Mol Sci

January 2025

State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.

Terpenoids, abundant and structurally diverse secondary metabolites in plants, especially in conifer species, play crucial roles in the plant defense mechanism and plant growth and development. In , terpenoids' biosynthesis relies on both the mevalonate (MVA) pathway and the 2-methyl-D-erythritol-4-phosphate (MEP) pathway, with 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS) catalyzing the sixth step of the MEP pathway. In this study, we cloned and conducted bioinformatics analysis of the gene from .

View Article and Find Full Text PDF

Gibberellin regulates the synthesis of stone cells in 'Nanguo' pear via the PuMYB91-PuERF023 module.

Physiol Plant

January 2025

Key Laboratory of Fruit Postharvest Biology, Liaoning Province; College of Horticulture, Shenyang Agricultural University, Shenyang, China.

Stone cells are one of the limiting factors affecting pear fruit quality and commodity value. The formation of stone cell is highly correlated with lignin deposition. However, the molecular mechanism of stone cell formation and regulation is still unclear.

View Article and Find Full Text PDF

Identification and characterization of cold-responsive cis-element in the OsPHD13 and OsPHD52 promoter and its upstream regulatory proteins in rice.

Plant Sci

January 2025

Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China. Electronic address:

Rice (Oryza sativa L.) is one of the most important grain crops in the world. Abiotic stress such as low temperature is an important factor affecting the yield and quality of rice.

View Article and Find Full Text PDF

Phosphorus (P) is an essential yet frequently deficient plant nutrient. Optimizing P distribution and recycling between tissues is vital for improving P utilization efficiency (PUE). Yet, the mechanisms underlying the transport and re-translocation of P within plants remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!