Despite the recent wealth of genome-wide association studies, insufficient power may explain why much of the heritable contribution to common diseases remains hidden. As different SNP panels are genotyped by commercial chips, increasing study power through meta-analysis is made problematic. To address these power issues we suggest an approach which permits meta-analysis of candidate SNPs from multiple GWAS. By identifying correlated SNPs from different platforms (r(2)=1), using PLINK's 'clumping' method, we generated combined p-values (using Fisher's combined and random effects meta-analysis) for each clump. P-values were corrected for the number of clumps (representing the number of independent tests). We also explored to what extent commercial platforms tag HapMap SNPs within these candidate genes. To illustrate this approach, and to serve as 'proof-of-principle', we used 3 late-onset Alzheimer's disease GWAS datasets to explore SNP-disease associations in 4 new candidate genes encoding cerebro-spinal fluid biomarkers for Alzheimer's disease; Fibrinogen γ-chain (FGG), SPARC-like1 (SPARCL1), Contactin-1 (CNTN1) and Contactin-2 (CNTN2). Genes encoding current Alzheimer's biomarkers; APP (Aβ), MAPT (Tau) and APOE were also included. This method identified two SNP 'clumps'; one clump in APOE (rs4420638) and one downstream of CNTN2 (which harboured rs7523477 and rs4951168) which were significant following random effects meta-analysis (P < 0.05). The latter was linked to three conserved SNPs in the 3'-UTR of CNTN2. We cannot rule out that this result is a false positive due to the large number of statistical tests applied; nevertheless this approach is easily applied and might well have utility in future '-omics' studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076759PMC

Publication Analysis

Top Keywords

alzheimer's disease
12
biomarkers alzheimer's
8
random effects
8
effects meta-analysis
8
candidate genes
8
genes encoding
8
meta-analysis
5
silico clumping
4
clumping meta-analysis
4
meta-analysis genome-wide
4

Similar Publications

Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, extracellular amyloid-β (Aβ) plaque accumulation, and intracellular neurofibrillary tangles. Recent efforts to find effective therapies have increased interest in natural compounds with multifaceted effects on AD pathology. This study explores natural compounds for their potential to mitigate AD pathology using molecular docking, ADME screening, and assays, with ruscogenin─a steroidal sapogenin from emerging as a promising candidate.

View Article and Find Full Text PDF

Objective: Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening is safe and potentially beneficial in patients with Alzheimer's disease (AD) for the removal of amyloid-beta (Aβ) plaques. However, the optimal BBB opening intervals and number of treatment sessions for clinical improvement remain undefined. Therefore, the aim of this study was to evaluate the safety and benefits of repeated and more extensive BBB opening alone.

View Article and Find Full Text PDF

Significance: In an aging population, the number of people living with neurodegenerative disease is projected to increase. It is vital to develop reliable, noninvasive biomarkers to detect disease onset and monitor progression, and there is a growing body of research into the ocular surface as a potential source of such biomarkers.

Background: This article reviews the potential of in vivo corneal confocal microscopy and tear fluid analysis as tools for biomarker development.

View Article and Find Full Text PDF

From Europe to the World: EMA's Leadership in Alzheimer Disease Treatment.

Am J Ther

January 2025

James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!