Previously, we reported a strong association of the high activity SULT1A1*1 allele and overall survival of patients receiving tamoxifen therapy, indicating that sulfation of 4-hydroxytamoxifen (4-OHT) via SULT1A1 may contribute to the therapeutic efficacy of tamoxifen treatment. In most, but not all cases, sulfation is considered to be an elimination pathway; therefore we sought to define the biological mechanism by which increased sulfation of tamoxifen could provide a therapeutic benefit. We compared the antiproliferative and apoptotic responses between MCF7-SULT1A1 expressing cells and control MCF7 pcDNA3 cells when treated with 4-OHT. We observed a greater than 30% decrease in cell proliferation in MCF7-SULT1A1 expressing cells at physiological concentrations of 4-OHT, and significant cell death in SULT1A1-expressing cells treated with 2µM 4-OHT for 48 hours compared to control cells (p<0.05). Within 24 hours of drug treatment, an 80% increase in apoptosis in SULT1A1-expressing cells was apparent when compared to similarly treated cells that did not express SULT1A1. We also observed an increase in endonuclease G, the primary endonuclease expressed in ER-dependent breast cancer cells, which participates in caspaseindependent apoptosis. These data confirm that SULT1A1-mediated biotransformation of 4-OHT is important in the efficacy of 4-OHT cytotoxicity in breast tumors, and reveals a potential role for sulfated metabolites in the efficacy of tamoxifen therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076764 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!