We have previously shown that in vivo γ-retroviral gene therapy of dogs with X-linked severe combined immunodeficiency (XSCID) results in sustained T cell reconstitution and sustained marking in myeloid and B cells for up to 4 years with no evidence of any serious adverse effects. The purpose of this study was to determine whether ex vivo γ-retroviral gene therapy of XSCID dogs results in a similar outcome. Eight of 12 XSCID dogs treated with an average of dose of 5.8 × 10(6) transduced CD34(+) cells/kg successfully engrafted producing normal numbers of gene-corrected CD45RA(+) (naïve) T cells. However, this was followed by a steady decrease in CD45RA(+) T cells, T cell diversity, and thymic output as measured by T cell receptor excision circles (TRECs) resulting in a T cell lymphopenia. None of the dogs survived past 11 months post treatment. At necropsy, few gene-corrected thymocytes were observed correlating with the TREC levels and one of the dogs was diagnosed with a thymic T cell lymphoma that was attributed to the gene therapy. This study highlights the outcome differences between the ex vivo and in vivo approach to γ-retroviral gene therapy and is the first to document a serious adverse event following gene therapy in a canine model of a human genetic disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109141PMC
http://dx.doi.org/10.1016/j.vetimm.2011.04.003DOI Listing

Publication Analysis

Top Keywords

gene therapy
24
γ-retroviral gene
16
vivo γ-retroviral
12
therapy dogs
8
dogs x-linked
8
x-linked severe
8
severe combined
8
combined immunodeficiency
8
thymic cell
8
cell lymphoma
8

Similar Publications

Advancing precision and personalized breast cancer treatment through multi-omics technologies.

Am J Cancer Res

December 2024

School of Basic Medical Sciences, Jiamusi University No. 258, Xuefu Street, Xiangyang District, Jiamusi 154007, Heilongjiang, China.

Breast cancer is the most common malignant tumour in women, with more than 685,000 women dying of breast cancer each year. The heterogeneity of breast cancer complicates both treatment and diagnosis. Traditional methods based on histopathology and hormone receptor status are now no longer sufficient.

View Article and Find Full Text PDF

This review discusses multiple aspects of follicular lymphoma (FL), including etiology, treatment challenges, and future perspectives. First, we delve into the etiology of FL, which involves a variety of pathogenic mechanisms such as gene mutations, chromosomal abnormalities, immune escape, immune system dysregulation, familial inheritance, and environmental factors. These mechanisms provide the context for understanding the diversity and complexity of FL.

View Article and Find Full Text PDF

Unlabelled: Quantitative understanding of mitochondrial heterogeneity is necessary for elucidating the precise role of these multifaceted organelles in tumor cell development. We demonstrate an early mechanistic role of mitochondria in initiating neoplasticity by performing quantitative analyses of structure-function of single mitochondrial components coupled with single cell transcriptomics. We demonstrate that the large Hyperfused-Mitochondrial-Networks (HMNs) of keratinocytes promptly get converted to the heterogenous Small-Mitochondrial-Networks (SMNs) as the stem cell enriching dose of the model carcinogen, TCDD, depolarizes mitochondria.

View Article and Find Full Text PDF

The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.

View Article and Find Full Text PDF

Acute myeloid leukemias (AMLs) have an overall poor prognosis with many high-risk cases co-opting stem cell gene regulatory programs, yet the mechanisms through which this occurs remain poorly understood. Increased expression of the stem cell transcription factor, MECOM, underlies one key driver mechanism in largely incurable AMLs. How MECOM results in such aggressive AML phenotypes remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!