Background: Cryopreserved allogeneic heart valves are usually stored and transported below -135°C; however, such methods require expensive equipment for both storage and transportation.
Methods: In this study, vitrified porcine aortic valves were stored on either side of the cryoprotectant formulation's glass transition temperature (-119°C) at -80°C and -135°C, using a newly formulated vitrification solution (VS83) consisting of a combination of 4.65M dimethyl sulfoxide, 4.65M formamide, and 3.30M 1,2-propanediol. Three groups of valves were studied: (1) fresh; (2) VS83-preserved, stored at -80°C; and (3) VS83-preserved, stored at -135°C.
Results: Using the VS83 cryoprotectant concentration formulation, cracking was not observed during valve storage. No ice-related events were detectable during 5°C rewarming by differential scanning calorimetry. All cryopreserved tissue samples demonstrated significantly less viability than fresh samples (p<0.01). No significant viability differences were observed between the VS83-preserved groups stored at -80°C and -135°C. Material testing did not reveal any significant differences among the three test groups. Multiphoton imaging of VS83-preserved heart valves stored at -80°C and -135°C demonstrated similar collagen and elastin structures.
Conclusions: These results indicate that VS83-preserved heart valves can be stored and transported at temperatures in the vicinity of -80°C with retention of extracellular matrix integrity and material properties. The VS83 preservation of heart valves at -80°C without the need for liquid nitrogen should result in both decreased manufacturing costs and reduced employee safety hazards. Moreover, it is anticipated that low cell viability may result in less immunogenicity in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.athoracsur.2011.02.043 | DOI Listing |
Br J Haematol
January 2025
Oncogenesis and Development Section, Translational and Functional Genomics Branch (TFGB), National Human Genome Research Institute (NHGRI), Bethesda, Maryland, USA.
Acute lymphoblastic leukemia (ALL) is a malignant condition of lymphoid progenitor cells that primarily affects the pediatric population, but also adults. The 5-year survival rate is 90% in children and approximately 40% in adults, with survival increasing through the use of peripheral stem cell allotransplantation (SCT). The relapse rate after stem cell transplantation (SCT) in adult acute lymphoblastic leukemia (ALL) patients ranges from 35% to 45%, making relapse a major cause of death in this population.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022 China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022 China. Electronic address:
Significant efforts have been made to deliver immunosuppressants-loaded nanoparticles (NPs) to lymph nodes (LNs) to mitigate transplant rejection. However, conventional administration techniques encounter challenges in enhancing the retention of NPs in the LNs. Attributing the strong affinity of tannic acid (TA) molecules to the elastin of LN conduits, we developed a novel formulation of NPs encapsulating Tacrolimus (FK506), and subsequently modified with TA to produce TA-FNP with a final diameter of approximately 86.
View Article and Find Full Text PDFJ Thorac Cardiovasc Surg
January 2025
Section of Congenital and Pediatric Cardiac Surgery, Division of Cardiac, Thoracic, and Vascular Surgery, NY-Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, USA. Electronic address:
Pediatr Blood Cancer
January 2025
Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA.
Background: Immune effector cell (IEC) therapies, including chimeric antigen receptor (CAR)-modified T-cell therapy, have shown efficacy in pediatric B-cell acute lymphoblastic leukemia (B-ALL) and are being investigated for other malignancies. A common toxicity associated with IEC therapy is cytokine release syndrome (CRS), which can lead to cardiovascular decompensation due to systemic inflammation. Data are limited regarding cardiovascular adverse effects in children.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!