Conjugates of cell-penetrating peptides (CPP) and splice redirecting oligonucleotides (ON) display clinical potential as attested by in vivo experimentation in murine models of Duchenne muscular dystrophy. However, micromolar concentrations of these conjugates are required to obtain biologically relevant responses as a consequence of extensive endosomal sequestration following endocytosis. Recent work from our group has demonstrated that appending stearic acid to CPPs increases their efficiency and that the inclusion of pH titrable entities leads to further improvement. Moreover, these modified CPPs form non covalent complexes with charged ON analogs or siRNAs, which allows decreasing the concentrations of ONs by nearly one log. These modified CPPs and the parent peptides have been compared here in the same in vitro model in terms of cell uptake, trafficking and splicing redirection activity. The increased splicing redirection activity of our modified CPPs cannot be explained by differences in cell uptake but rather by their enhanced ability to escape from endocytic vesicles. Accordingly, a clear correlation between membrane destabilizing activity and splicing redirection was observed using a liposome leakage assay. Studies of cellular trafficking for the most active PF6:ON complexes indicate uptake by clathrin-mediated endocytosis using either FACS cell uptake or a splicing redirection functional assay. Acidification of intracellular vesicles and membrane potential were found important for splicing redirection but not for cell uptake. These results do confirm that the increased potency of PF6:ON complexes is not due to the use of a non endocytic route of cell internalization as proposed for some CPPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2011.04.013 | DOI Listing |
J Hepatol
January 2025
Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China. Electronic address:
Background & Aims: The ubiquitin receptor ADRM1/Rpn13 governs the specificity of eukaryotic protein degradation. By SMRT sequencing, we first discovered a novel spliced variant of ADRM1 with a skipped exon 9, termed ADRM1-ΔEx9, in human hepatocellular carcinoma (HCC). This study aimed to elucidate this novel ubiquitin receptor's underlying biology and clinical implications in HCC.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2024
Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain.
Exploring non-coding regions is increasingly gaining importance in the diagnosis of inherited retinal dystrophies. Deep-intronic variants causing aberrant splicing have been identified, prompting the development of antisense oligonucleotides (ASOs) to modulate splicing. We performed a screening of five previously described deep-intronic variants among monoallelic patients with Usher syndrome (USH) or isolated retinitis pigmentosa.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Centre of Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia.
Front Mol Neurosci
July 2024
Department of Human Genetics, The Neuroscience Institute, University of Chicago, Chicago, IL, United States.
Pediatric neurological disorders are frequently devastating and present unmet needs for effective medicine. The successful treatment of spinal muscular atrophy with splice-switching antisense oligonucleotides (SSO) indicates a feasible path to targeting neurological disorders by redirecting pre-mRNA splicing. One direct outcome is the development of SSOs to treat haploinsufficient disorders by targeting naturally occurring non-productive splice isoforms.
View Article and Find Full Text PDFJ Biol Chem
July 2024
Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India. Electronic address:
Autophagy is a pivotal regulatory and catabolic process, induced under various stressful conditions, including hypoxia. However, little is known about alternative splicing of autophagy genes in the hypoxic landscape in breast cancer. Our research unravels the hitherto unreported alternative splicing of BNIP3L, a crucial hypoxia-induced autophagic gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!