Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To determine whether dexamethasone (DEX) could potentiate amyloid beta-protein (Abeta)-induced learning and memory impairment in rats, and, if so, what the underlying mechanism is.
Methods: Morris water maze was used to investigate whether DEX could potentiate Abeta-induced learning and memory impairment in rats, and the histopathologic changes in CA1 field of hippocampus were examined under a light microscope. Immunohistochemistry was used to observe the change of the phosphorylated tau at Thr-231 in the CA1 field of hippocampus. The effects of DEX on the levels of phospho-tau and p25 induced by Abeta were analyzed by Western blot.
Results: The results showed that DEX could potentiate Abeta-induced learning and memory impairment and pathological damage in CA1 field of hippocampus in Sprague Dawley (SD) rats, and could enhance the increased levels of phosphorylated tau induced by Abeta(25-35) in the neuronal cell bodies in CA1 field of hippocampus of SD rats and in the protein extracts from hippocampus. Pretreatment of hippocampal neurons with DEX could up-regulate the increased levels of phosphorylated tau and p25 protein induced by Abeta(25-35) in vitro.
Conclusions: These results suggest that DEX could potentiate Abeta-induced learning and memory impairment and pathological damage in CA1 field of hippocampus in SD rats, which might be related to DEX up-regulating the levels of phosphorylated tau and p25 protein induced by Abeta(25-35). Since Abeta and glucocorticoids increase with aging, DEX potentiating Abeta-induced learning and memory impairment may be one of the etiology of Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1179/016164110X12816242542698 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!