Unlabelled: Campylobacter jejuni is the leading cause of bacterial diarrheal illness worldwide. Many strains are now becoming multidrug resistant. Apple-based edible films containing carvacrol and cinnamaldehyde were evaluated for bactericidal activity against antibiotic resistant and susceptible C. jejuni strains on chicken. Retail chicken breast samples inoculated with D28a and H2a (resistant strains) and A24a (a sensitive strain) were wrapped in apple films containing cinnamaldehyde or carvacrol at 0.5%, 1.5%, and 3% concentrations, and then incubated at 4 or 23 °C for 72 h. Immediately after wrapping and at 72 h, samples were plated for enumeration of viable C. jejuni. The antimicrobial films exhibited dose- and temperature-dependent bactericidal activity against all strains. Films with ≥1.5% cinnamaldehyde reduced populations of all strains to below detection at 23 °C at 72 h. At 4 °C with cinnamaldehyde, reductions were variable for all strains, ranging from 0.2 to 2.5 logs and 1.8 to 6.0 logs at 1.5% and 3.0%, respectively. Films with 3% carvacrol reduced populations of A24a and H2a to below detection, and D28a by 2.4 logs at 23 °C and 72 h. A 0.5-log reduction was observed for both A24a and D28a, and 0.9 logs for H2a at 4 °C at 3% carvacrol. Reductions ranged from 1.1 to 1.9 logs and 0.4 to 1.2 logs with 1.5% and 0.5% carvacrol at 23 °C, respectively. The films with cinnamaldehyde were more effective than carvacrol films. Reductions at 23 °C were greater than those at 4 °C. Our results showed that antimicrobial apple films have the potential to reduce C. jejuni on chicken and therefore, the risk of campylobacteriosis. Possible mechanisms of antimicrobial effects are discussed.

Practical Application:   Apple antimicrobial films could potentially be used in retail food packaging to reduce C. jejuni commonly present on food.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1750-3841.2011.02065.xDOI Listing

Publication Analysis

Top Keywords

apple films
12
films
10
antibiotic resistant
8
chicken breast
8
films carvacrol
8
bactericidal activity
8
films cinnamaldehyde
8
°c
8
antimicrobial films
8
reduced populations
8

Similar Publications

It is still a challenge to use a fast and efficient method for preserving fresh-cut fruits from browning. To address this problem, we developed konjac glucomannan (KGM) incorporated with elderberry anthocyanins (EA) to form film-forming solution (KEA) combined with polyvinylpyrrolidone (PVP) solution to produce KEA/PVP fiber films by microfluidic blow spinning (MBS). The introduction of PVP and EA improved the spinnability and function properties of KGM-based fiber film, respectively.

View Article and Find Full Text PDF

Development of sustainable and active food packaging films based on alginate enriched with plant polyphenol carbon dots and layered clay.

Int J Biol Macromol

January 2025

Xiamen Meijiamei New Material Technology Co., Ltd., Xiamen 361110, PR China. Electronic address:

Natural polymer based food packaging has attracted more and more attention, but the lack of active functions of natural polymer hinders its application in the field of active packaging. In this study, chlorogenic acid carbon dots (CGA-CDs) was synthesized mildly using natural plant polyphenol CGA as carbon source, and CGA functionalized layered clays (LDHs@CGA) was introduced as reinforcing agent. Alg active films were fabricated by solution casting method using natural polysaccharide-alginate (Alg), CGA-CDs and LDHs@CGA.

View Article and Find Full Text PDF

Fruit Vinegars as Natural and Bioactive Chitosan Solvents in the Production of Chitosan-Based Films.

Polymers (Basel)

December 2024

Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznan, Poland.

Natural fruit vinegars, derived from various fruits, enhance culinary experience and offer potential health benefits due to their bioactive compounds. In this study, fruit vinegars (apple, blackcurrant, and cherry) were used as natural solvents for producing chitosan films, introducing an environmentally friendly approach. Fruit vinegars and chitosan-based solutions were examined for their antioxidant and antimicrobial properties.

View Article and Find Full Text PDF

Performance of Biodegradable Active Packaging in the Preservation of Fresh-Cut Fruits: A Systematic Review.

Polymers (Basel)

December 2024

Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia.

Fresh-cutting fruits is a common practice in markets and households, but their short shelf life is a challenge. Active packaging is a prominent strategy for extending food shelf life. A systematic review was conducted following the PRISMA guidelines to explore the performance and materials used in biodegradable active packaging for fresh-cut fruits.

View Article and Find Full Text PDF

Recent Advances in Cellulose Nanofiber Modification and Characterization and Cellulose Nanofiber-Based Films for Eco-Friendly Active Food Packaging.

Foods

December 2024

Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi'an 710119, China.

There is growing interest in the use of bio-based materials as viable alternatives to petrochemical-based packaging. However, the practical application of bio-based films is often hampered by their poor barrier and poor mechanical properties. In this context, cellulose nanofibers (CNFs) have attracted considerable attention owing to their exceptional biodegradability, high aspect ratio, and large surface area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!