Unlabelled: The generation of off-flavors in soybean homogenates such as n-hexanal via the lipoxygenase (LOX) pathway can be a problem in the processed food industry. Previous studies have examined the effect of using soybean varieties missing one or more of the 3 LOX isozymes on n-hexanal generation. A dynamic mathematical model of the soybean LOX pathway using ordinary differential equations was constructed using parameters estimated from existing data with the aim of predicting how n-hexanal generation could be reduced. Time-course simulations of LOX-null beans were run and compared with experimental results. Model L(2), L(3), and L(12) beans were within the range relative to the wild type found experimentally, with L(13) and L(23) beans close to the experimental range. Model L(1) beans produced much more n-hexanal relative to the wild type than those in experiments. Sensitivity analysis indicates that reducing the estimated K(m) parameter for LOX isozyme 3 (L-3) would improve the fit between model predictions and experimental results found in the literature. The model also predicts that increasing L-3 or reducing L-2 levels within beans may reduce n-hexanal generation.
Practical Application: This work describes the use of mathematics to attempt to quantify the enzyme-catalyzed conversions of compounds in soybean homogenates into undesirable flavors, primarily from the compound n-hexanal. The effect of different soybean genotypes and enzyme kinetic constants was also studied, leading to recommendations on which combinations might minimize off-flavor levels and what further work might be carried out to substantiate these conclusions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992688 | PMC |
http://dx.doi.org/10.1111/j.1750-3841.2010.01733.x | DOI Listing |
Foods
January 2025
Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
In this paper, the effect of soybean isolate protein (SPI) content on the physicochemical properties and oxidative stability of chitosan-sodium tripolyphosphate (CS-STPP)-loaded fish oil capsules was investigated. The SPI/CS-STTP capsules formed after the addition of different amounts of SPI were larger in size and more homogeneous in morphology than the CS-STPP capsules, and the SPI was encapsulated on the surface of the CS matrix, altering the surface properties and morphology of the particles. The study of different CS-to-SPI blend ratios (1:0, 3:1, 2:1, 1:1, 1:2) showed that the water content of the microcapsules increased from 49.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, Maharashtra, India.
A 60-day feeding trial was conducted to evaluate the combined effect of dietary soy phytoestrogens, specifically genistein and daidzein, on the gonadal recrudescence and maturation of male Cyprinus carpio (Linnaeus, 1758). Adult male C. carpio (60 ± 10 g) were fed with a diet with no added genistein or daidzein (C), 110 mg/100 mg genistein (GL), 210 mg/100 g genistein (GH), 4 mg/100 g daidzein (DL), 8 mg/100 g daidzein (DH), combination of 110 mg/100 mg genistein and 4 mg/100 g daidzein (DGL, equivalent to 17.
View Article and Find Full Text PDFFood Chem
December 2024
Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China. Electronic address:
This study investigated the effects of formulation and ultrasound on the processing properties and nutrient digestion of soy protein isolate (SPI)-egg white protein (EWP) emulsion gels. The incorporation of EWP significantly improved the texture properties and freeze-thaw stability through disulfide bonds and homogeneous networks in comparison to SPI emulsion gels. However, swelling ratio of emulsion gels at SPI:EWP ratios of 3:1 and 2:1 decreased due to disruption of SPI network continuity.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Europa Plaza 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain. Electronic address:
With the urge to reduce the use of petroleum-based materials, the aim of this work is to valorize biowaste to develop smart films through a sustainable fabrication way. In this regard, choline chloride/urea (1:2) deep eutectic solvent (DES) at different concentrations (25, 40, 50 and 75 wt%) was used to dissolve cow horn, used as reinforcement agent in soy protein films. The film fabrication was carried out by compression molding, a fast and cost-effective.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada.
L-arginine: glycine amidinotransferase (AGAT) gained academic interest as the rate-limiting enzyme in creatine biosynthesis and its role in the regulation of creatine homeostasis. Of clinical relevance is the diagnosis of patients with AGAT deficiency but also the potential role of AGAT as therapeutic target for the treatment of another creatine deficiency syndrome, guanidinoacetate N-methyltransferase (GAMT) deficiency. Applying a stable isotope-labeled substrate method, we utilized ARG 15N (ARG-δ2) and GLY 13C15N (GLY-δ3) to determine the rate of 1,2-13C,15N guanidinoacetate (GAA-δ5) formation to assess AGAT activity in various mouse tissue samples and human-derived cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!