Traditionally, ozone processing within the food industry has focused on solid foods by either gaseous treatment or washing with ozonized water. However, with the FDA's approval of ozone as a direct additive to food, the potential for liquid applications has emerged. This study investigates the effect of ozone processing on microbial inactivation (E. coli ATCC 25922 and NCTC 12900) and quality parameters (color, phenolic content) of cloudy apple juice. Apple juice samples were ozonated at room temperature (20 ± 1.5 °C) with a generated ozone concentration of 0.048 mg O(3) at a constant flow rate of 0.12 L/min and treatment time of 0 to 10 min. E. coli inactivation kinetics in apple juice were described quantitatively by using the Shoulder log-linear and the Weibull model. Ozone treatment of E. coli in apple juice demonstrate that a desired 5 log reduction can be achieved within 5 min. Apple juice color (L*, a*, and b*) and total phenols were significantly affected by ozone concentration and treatment time.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1750-3841.2010.01750.xDOI Listing

Publication Analysis

Top Keywords

apple juice
24
cloudy apple
8
ozone processing
8
ozone concentration
8
treatment time
8
apple
6
juice
6
ozone
6
safety quality
4
quality assessment
4

Similar Publications

The inclusion of redox mediators into electrocatalytic systems facilitates rapid electron shuttling kinetics and boosts the overall catalytic performance of the electrode. This approach overcomes the sluggish reaction dynamics associated with direct electron transfer, which may be impeded by restricted analyte access to the electrode's active sites. In contrast to conventional synthetic redox mediators, naturally sourced phytomolecule rutin trihydrate (RT), extracted from apple juice, offers potential ecological advantages.

View Article and Find Full Text PDF

The detection of adulteration in apple juice concentrate is critical for ensuring product authenticity and consumer safety. This study evaluates the effectiveness of artificial neural networks (ANN) and support vector machines (SVM) in analyzing spectroscopic data to detect adulteration in apple juice concentrate. Four techniques-UV-visible, fluorescence, near-infrared (NIR) spectroscopy, and time domain H nuclear magnetic resonance relaxometry (H NMR)-were used to generate data from both authentic and adulterated apple juice samples.

View Article and Find Full Text PDF

Myricetin has a significant role in pharmacology, specifically in traditional Chinese medicine. The most intriguing pharmacological action of myricetin consists of its multi-pathway anticancer effects. Therefore, rapid and selective isolation of myricetin from garlic and apple juices has notable pharmacological benefits.

View Article and Find Full Text PDF

Alicyclobacillus spp. are crucial factors affecting the quality of fruit juice, so it is very important to control their contamination. In this study, the inactivation activity and mechanism of high-voltage pulsed electric fields (HVPEF) combined with antibacterial agents against Alicyclobacillus spp.

View Article and Find Full Text PDF

Jellified materials were observed in spoiled pasteurized apple juice that contained dimethyl dicarbonate (DMDC). Microbiological analysis showed a high microbial load (4-5 log CFU/mL) in the sample. Acetobacter spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!