The photosynthetic alphaproteobacterium Rhodobacter sphaeroides has to cope with photooxidative stress that is caused by the bacteriochlorophyll a-mediated formation of singlet oxygen ((1)O(2)). Exposure to (1)O(2) induces the alternative sigma factors RpoE and RpoH(II) which then promote transcription of photooxidative stress-related genes, including small RNAs (sRNAs). The ubiquitous RNA chaperone Hfq is well established to interact with and facilitate the base-pairing of sRNAs and target mRNAs to influence mRNA stability and/or translation. Here we report on the pleiotropic phenotype of a Δhfq mutant of R. sphaeroides, which is less pigmented, produces minicells and is more sensitive to (1)O(2). The higher (1)O(2) sensitivity of the Δhfq mutant is paralleled by a reduced RpoE activity and a disordered induction of RpoH(II)-dependent genes. We used co-immunoprecipitation of FLAG-tagged Hfq combined with RNA-seq to identify association of at least 25 sRNAs and of mRNAs encoding cell division proteins and ribosomal proteins with Hfq. Remarkably, > 70% of the Hfq-bound sRNAs are (1)O(2)-affected. Proteomics analysis of the Hfq-deficient strain revealed an impact of Hfq on amino acid transport and metabolic functions. Our data demonstrate for the first time an involvement of Hfq in regulation of photosynthesis genes and in the photooxidative stress response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2011.07658.x | DOI Listing |
Nat Commun
December 2024
Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O) contribute to oxidative damage.
View Article and Find Full Text PDFPhotosynthetica
March 2024
College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China.
The effects of selenite (0, 15, 30, 45 mg L) on physiological characteristics and medicinal components of were analyzed. The results showed that selenite application promoted the activity of superoxide dismutase and the contents of soluble sugar, proline, carotenoids, total flavonoids, and total polyphenols, and decreased the contents of reactive oxygen species, relative electrical conductivity, and malondialdehyde. In addition, selenite also increased chlorophyll content, improved electron transfer ability, PSI and PSII performance, and the coordination between PSI and PSII, which significantly improved photosynthetic capacity.
View Article and Find Full Text PDFFree Radic Biol Med
December 2024
Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Physiol Plant
December 2024
Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Spain.
Mediterranean-type ecosystems are recognized as critical hotspots for both biodiversity and climate change. Within these environments, plants often interact with diverse species, including holoparasitic plants, while simultaneously facing increasing episodes of precipitation shortages and rising temperatures. Here, we investigated the impact of Orobanche latisquama Reut.
View Article and Find Full Text PDFAdv Mater
November 2024
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!