Primary Objective: Recent evidence suggests that delayed hypoxic post-conditioning is neuroprotective. The aim of the present study was to test whether early post-conditioning applied immediately after hypoxia could protect cultured neurons from hypoxia/reoxygenation (H/R)-induced injuries.

Methods: Primary cortical neuronal culture depleted of microglia was exposed to H/R. Post-conditioning started immediately after hypoxia and consisted of three cycles of 15-minutes of reoxygenation and 15-minutes of hypoxia. Cell viability assay was performed using Cell Counting Kit-8 (CCK-8). Apoptosis was evaluated by Hoechst 33258 staining, FITC-Annexin V/PI double staining and Western blot assay (testing the cleaved caspase-3 expression). Reactive oxygen species (ROS), intracellular Ca(2+) and mitochondrial membrane potential (MMP) were examined using confocal laser-scanning microscopy.

Main Results: H/R significantly reduced cell viability and increased neuronal apoptosis and necrosis. Furthermore, the expression of cleaved caspase-3, ROS production and intracellular Ca(2+) were increased. MMP was attenuated. Injuries induced by H/R were substantially attenuated by early hypoxic post-conditioning. Changes in cleaved caspase-3 expression, ROS production, intracellular Ca(2+) level and MMP in response to H/R were significantly decreased by the post-conditioning.

Conclusions: The findings demonstrated that early hypoxic post-conditioning could protect neurons against H/R-induced injuries independent of microglial cells, possibly by inhibiting ROS over-production and intracellular Ca(2+) accumulation and maintaining MMP.

Download full-text PDF

Source
http://dx.doi.org/10.3109/02699052.2011.568035DOI Listing

Publication Analysis

Top Keywords

hypoxic post-conditioning
16
intracellular ca2+
16
early hypoxic
12
cleaved caspase-3
12
cell viability
8
caspase-3 expression
8
ros production
8
production intracellular
8
post-conditioning
6
protective effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!