Ten optically pure substituted 2-(pyridin-2-yl)imidazolidin-4-ones, 1a-d, 2a-4a, and 2b-4b, were prepared and characterized. The absolute configurations of individual ligands were determined by X-ray analysis or NOESY experiments. The Cu(II) complexes of the respective ligands were studied as enantioselective catalysts of the nitroaldol (Henry) reaction of aldehydes with nitromethane, giving the corresponding substituted 2-nitroalkanols. In the case of an anti arrangement of the imidazolidin-4-one ring, the obtained result was 91-96% ee, whereas in the case of syn arrangement, a significant drop to 25-27% ee was observed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo200703jDOI Listing

Publication Analysis

Top Keywords

highly enantioselective
4
enantioselective nitroaldol
4
nitroaldol reactions
4
reactions catalyzed
4
catalyzed copperii
4
copperii complexes
4
complexes derived
4
derived substituted
4
substituted 2-pyridin-2-ylimidazolidin-4-one
4
2-pyridin-2-ylimidazolidin-4-one ligands
4

Similar Publications

The utilization of the homogeneous ()-2-pyrrolidine-tetrazole organocatalyst (Ley catalyst) in the self-condensation of ethyl pyruvate and cross-aldol reactions of ethyl pyruvate donor with non-enolizable pyruvate acceptors, namely the sterically hindered ethyl 3-methyl-2-oxobutyrate or the highly electrophilic methyl 3,3,3-trifluoropyruvate, is described as the key enantioselective step toward the synthesis of the corresponding biologically relevant isotetronic acids featuring a quaternary carbon functionalized with ester and alkyl groups. The transition from homogeneous to heterogeneous flow conditions is also investigated, detailing the fabrication and operation of packed-bed reactors filled with a silica-supported version of the pyrrolidine-tetrazole catalyst (SBA-15 as the matrix).

View Article and Find Full Text PDF

Axial chiral biaryl skeletons are widely found in biologically active molecules, catalysts and chiral functional materials. However, highly catalytic stereoselective synthesis of tetra-ortho-substituted biaryls remains a challenging task. In this paper, we describe an efficient approach for construction of axially tetra-ortho-substituted biaryls via Suzuki-Miyaura coupling in the presence of a chiral monophosphate ligand developed by ourselves.

View Article and Find Full Text PDF

In(III)-Catalyzed 1,2-Hydrophosphorylation of 3-Alkynyl-3-hydroxyisoindolinones to 3,3-Disubstituted Isoindolinones Featuring Both Phosphoryl and Alkynyl Groups at the C3-Position.

J Org Chem

January 2025

Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.

We report a highly regioselective 1,2-addition of P(O)-H compounds to the in situ generated β,γ-alkynyl-α-ketimine derived from 3-alkynyl-3-hydroxyisoindolinones, which provided a general protocol for the preparation of 3,3-disubstituted isoindolinones featuring both phosphoryl and alkynyl groups at a quaternary carbon center. The use of only 2-5 mol % of an inexpensive catalyst (In(ClO)·8HO or Bi(OTf)) allowed the smooth output of the desired products under mild conditions (25 °C, 0.5-24 h) with a broad substrate scope (35 examples) in up to >99% yield.

View Article and Find Full Text PDF

Enantioselective Heck/Tsuji-Trost reaction of flexible vinylic halides with 1,3-dienes.

Nat Commun

January 2025

College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P. R. China.

The enantioselective domino Heck/cross-coupling has emerged as a powerful tool in modern chemical synthesis for decades. Despite significant progress in relative rigid skeleton substrates, the implementation of asymmetric Heck/cross-coupling cascades of highly flexible haloalkene substrates remains a challenging and and long-standing goal. Here we report an efficient asymmetric domino Heck/Tsuji-Trost reaction of highly flexible vinylic halides with 1,3-dienes enabled by palladium catalysis.

View Article and Find Full Text PDF

The development of efficient immobilization support for the enhancement of enzyme activity and recyclability is a highly desirable objective. Single-crystalline ordered macro-microporous ZIF-8 (SOM-ZIF-8), has emerged as a highly effective matrix for enzyme immobilization, however, the inherent hydrophobic nature limits its further advancement. Herein, we have customized the immobilization of the Pseudomonas cepacia lipase (LP) in the modification-channels of SOM-ZIF-8 by functionalizing the inner surface-properties with polyethylene glycol (PEG) (LP@SOM-ZIF-8-PEG), and significant enhancement of the activity and (thermal, solvent and cyclic) stability can be realized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!