To isolate differentially expressed genes during the juvenile-to-adult phase transition of an early-flowering trifoliate orange mutant (precocious trifoliate orange, Poncirus trifoliata), suppression subtractive hybridization was performed. In total, 463 cDNA clones chosen by differential screening of 1,920 clones were sequenced and 178 differentially expressed genes were identified, among which 41 sequences did not match any known nucleotide sequence. Analysis of expression profiles of the differentially expressed genes through hybridization on customized chips revealed their expression change was associated with the phase transition from juvenile to adult in the mutant. Open reading frames of nine selected genes were successfully determined by rapid amplification of cDNA ends. Expression analysis of these genes by real-time RT-PCR showed that transcript levels of several genes were associated with floral induction and inflorescence development. Among these genes, HM596718, a sequence sharing a high degree of similarity with Arabidopsis EARLY FLOWERING 5 (AtELF5) was discovered. Real-time PCR and in situ hybridization indicated its expression pattern was closely correlated with floral induction and flowering of the mutant. Ectopic expression of the gene in Arabidopsis caused early flowering; however, its functional characterization is different than the role of AtELF5 observed in Arabidopsis. A yeast two-hybrid assay indicated that PtELF5 significantly interacted with DUF1336 domain of a hypothetical protein, which has not yet been functionally characterized in woody plants. These findings suggest that PtELF5 may be a novel gene that plays an important role during the early flowering of precocious trifoliate orange.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-011-9780-2DOI Listing

Publication Analysis

Top Keywords

trifoliate orange
16
differentially expressed
12
expressed genes
12
early flowering
12
functional characterization
8
genes
8
genes associated
8
early-flowering trifoliate
8
orange poncirus
8
poncirus trifoliata
8

Similar Publications

Introduction: Useful germplasm for citrus breeding includes all sexually compatible species of the former genera , and , now merged in the single genus. An improved knowledge on the synteny/collinearity between the genome of these different species, and on their recombination landscapes, is essential to optimize interspecific breeding schemes.

Method: We have performed a large comparative genetic mapping study including several main clades of the genus.

View Article and Find Full Text PDF

Integrated Transcriptome and Metabolome Analysis Reveals Insights into Flavone and Flavonol Biosynthesis in Salicylic Acid-Induced Huanglongbing Tolerance.

J Agric Food Chem

December 2024

Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, Florida 32611, United States.

Salicylic acid (SA) exhibits positive effects against Huanglongbing (HLB), but how SA affects citrus resistance to HLB is currently unknown. This study conducted integrated transcriptome and metabolome analyses on SA-treated (HLB-sensitive) and (HLB-tolerant). The results indicated that the syntheses of flavones and flavonols were induced by SA, while the expression levels of associated genes and the contents of corresponding metabolites varied significantly between the two species after SA treatment or HLB infection.

View Article and Find Full Text PDF

Genetic and physiological characteristics of edited citrus and their impact on HLB tolerance.

Front Genome Ed

December 2024

Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States.

Article Synopsis
  • Huanglongbing (HLB) disease, triggered by the bacterium Liberibacter asiaticus, poses a serious threat to citrus production with no existing cure, making the development of resistant cultivars essential.
  • Researchers focused on the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) family, specifically modifying NPR1 and NPR3 genes in sweet orange trees to improve HLB resistance.
  • The genome-edited sweet orange varieties showed enhanced vigor compared to wild-type trees under greenhouse conditions, suggesting that targeted gene editing can help in developing HLB-tolerant citrus plants, although further field tests are required to confirm these results.
View Article and Find Full Text PDF

The transcription factor TGA2 orchestrates salicylic acid signal to regulate cold-induced proline accumulation in Citrus.

Plant Cell

December 2024

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China.

Plants subjected to cold stress have been observed to accumulate proline, but the underlying regulatory mechanism remains to be elucidated. In this study, we identified a pyrroline-5-carboxylate synthetase (P5CS)-encoding gene (CtrP5CS1) from trifoliate orange (Citrus trifoliata L.), a cold-hardy citrus species, as a critical gene for cold-induced proline accumulation.

View Article and Find Full Text PDF

Full-length single-molecule sequencing uncovers novel insight into the global landscape of the cold stress response in trifoliate orange ().

Front Plant Sci

November 2024

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China.

Trifoliate orange ( (L.) Raf.) is a cold-hardy citrus species that contributes to citrus production by frequently serving as a rootstock.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!