MicroRNAs (miRNAs) are ~21 nt long small RNAs transcribed from endogenous MIR genes which form precursor RNAs with a characteristic hairpin structure. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences resulting in cleavage or translational inhibition of the target RNA. Artificial miRNAs (amiRNAs) can be generated by exchanging the miRNA/miRNA sequence of endogenous MIR precursor genes, while maintaining the general pattern of matches and mismatches in the foldback. Thus, for functional gene analysis amiRNAs can be designed to target any gene of interest. During the last decade the moss Physcomitrella patens emerged as a model plant for functional gene analysis based on its unique ability to integrate DNA into the nuclear genome by homologous recombination which allows for the generation of targeted gene knockout mutants. In addition to this, we developed a protocol to express amiRNAs in P. patens that has particular advantages over the generation of knockout mutants and might be used to speed up reverse genetics approaches in this model species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-61779-123-9_5 | DOI Listing |
Sci Adv
December 2024
Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA.
Similar to cellulose synthases (CESAs), cellulose synthase-like D (CSLD) proteins synthesize β-1,4-glucan in plants. CSLDs are important for tip growth and cytokinesis, but it was unknown whether they form membrane complexes in vivo or produce microfibrillar cellulose. We produced viable CESA-deficient mutants of the moss to investigate CSLD function without interfering CESA activity.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
Isoprenoids comprise the largest group of plant specialized metabolites. 1-deoxy-D-xylulose-5-phosphate synthase (DXS) is one of the major rate-limiting enzymes in their biosynthesis. The DXS family expanded structurally and functionally during evolution and is believed to have significantly contributed to metabolic complexity and diversity in plants.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan.
The sexual reproductive organs of bryophytes - in which gametes necessary for fertilization are produced, namely, male antheridia and female archegonia - are formed from vegetative haploid gametophytes. In dioicous bryophytes such as Marchantia polymorpha, the genes within the sex-determining regions in distinct sexual strains have been identified. However, in monoicous bryophytes such as Physcomitrium patens, how the two sex fates are specified on the same gametophyte remained unknown.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
January 2025
Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; China National Botanical Garden, 100093 Beijing, China; Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China. Electronic address:
Photosystem I (PSI) is a large membrane photosynthetic complex that harvests sunlight and drives photosynthetic electron transport. In both green algae and higher plants, PSI's ultrafast energy transfer and charge separation kinetics have been characterized. In contrast, it is not yet clear in Physcomitrella patens, even though moss is one of the earliest land plants and represents a critical stage in plant evolution.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Pretreatment of Physcomitrium patens with abscisic acid (ABA) has been shown to induce desiccation tolerance. While previous research suggests that ABA-induced production of proteins and soluble sugars contributes to desiccation stress tolerance, additional mechanisms underlying this tolerance remain unclear. In this study, we found that ABA pretreatment led to increased levels of digalactosyl diacylglycerol (DGDG), phosphatidylcholine (PC), and phosphatidylinositol (PI), along with a decrease in monogalactosyl diacylglycerol (MGDG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!