The unicellular green alga Chlamydomonas reinhardtii has emerged to be an important model organism for the study of oxygenic eukaryotic photosynthesis as well as other processes occurring in the chloroplast. However, the chloroplast proteome in C. reinhardtii has only recently been comprehensively characterized, made possible by proteomics emerging as an accessible and powerful tool over the last decade. In this review, we introduce a compiled list of 996 experimentally chloroplast-localized proteins for C. reinhardtii, stemming largely from our previous proteomic dataset comparing chloroplasts and mitochondria samples to localize proteins. In order to get a taste of some cellular functions taking place in the C. reinhardtii chloroplast, we will focus this review particularly on metabolic differences between chloroplasts of C. reinhardtii and higher plants. Areas that will be covered are photosynthesis, chlorophyll biosynthesis, carbon metabolism, fermentative metabolism, ferredoxins and ferredoxin-interacting proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00294-011-0339-1 | DOI Listing |
BMC Genom Data
December 2024
Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
Background: Gossypium raimondii serves as a widely used genomic model cotton species. Its genetic influence to enhance fiber quality and ability to adapt to challenging environments both contribute to increasing cotton production. The formins are a large protein family that predominately consists of FH1 and FH2 domains.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
In green plants, the chloroplast is responsible for light energy transition and organic assimilation. However, the molecular mechanisms underlying chloroplast development in horticultural crops remain unclear. Here, four-dimensional data-independent acquisition-based proteomic profiling identified 1,727 differentially expressed proteins between "Zhongshu 4" (ZS4) and () leaves, a considerable proportion of which were down-regulated chloroplast proteins.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
Plant Mol Biol
November 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.
Existence of potent in vitro regeneration system is a prerequisite for efficient genetic transformation and functional genomics of crop plants. In this study, two contrasting cultivars differencing in their in vitro regeneration efficiency were identified. Tissue culture friendly cultivar Golden Promise (GP) and tissue culture resistant DWRB91(D91) were selected as contrasting cultivars to investigate the molecular basis of regeneration efficiency through multiomics analysis.
View Article and Find Full Text PDFPlant J
December 2024
Department of Biosciences, Rice University, Houston, Texas, 77005, USA.
Peroxisomes house diverse metabolic pathways that are essential for plant and animal survival, including enzymes that produce or inactivate toxic byproducts. Despite the importance of peroxisomes and their collaborations with other organelles, the mechanisms that trigger or prevent peroxisome turnover and the cellular impacts of impaired peroxisomes are incompletely understood. When Arabidopsis thaliana LON2, a peroxisomal protein with chaperone and protease capacity, is disrupted, metabolic dysfunction and protein instability in peroxisomes ensue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!